2024 Vol. 40, No. 6
Article Contents

TIAN Zhenhuan, WANG Houjie, WANG Wei, SHI Jinghao. Status quo of offshore geothermal energy development and its enlightenment to China[J]. Marine Geology Frontiers, 2024, 40(6): 1-12. doi: 10.16028/j.1009-2722.2023.172
Citation: TIAN Zhenhuan, WANG Houjie, WANG Wei, SHI Jinghao. Status quo of offshore geothermal energy development and its enlightenment to China[J]. Marine Geology Frontiers, 2024, 40(6): 1-12. doi: 10.16028/j.1009-2722.2023.172

Status quo of offshore geothermal energy development and its enlightenment to China

  • Under the background of world energy shortage and carbon emission reduction targets, with the progress of marine and geothermal energy development technology, the potential of offshore geothermal energy has attracted more and more attention. The distribution of hot spots in the development of offshore geothermal resources in the world, as well as the advantages and disadvantages of the utilization of offshore geothermal resources were analyzed. The status quo and key technologies of offshore geothermal resources exploration were summarized, including offshore geothermal utilization strategy, geothermal exploration technology, geothermal resource evaluation technology, geothermal utilization technology and the environment impact evaluation technology, ect. It is pointed out that there are many challenges in the development and utilization of offshore geothermal energy in China, such as weak basic data, insufficient innovation of key technologies, poor autonomy of core equipment, and imperfect incentive policies, etc. At last, the corresponding development suggestions are given.

  • 加载中
  • [1] 滕吉文,张永谦,阮小敏. 发展可再生能源和新能源与必须深层次思考的几个科学问题:非化石能源发展的必由之路[J]. 地球物理学进展,2010,25(4):1115-1152.

    Google Scholar

    [2] 马冰,贾凌霄,于洋,等. 世界地热能开发利用现状与展望[J]. 中国地质,2021,48(6):1734-1747. doi: 10.12029/gc20210606

    CrossRef Google Scholar

    [3] DAVIES J H. Global map of solid earth surface heat flow[J]. Geochemistry,Geophysics,Geosystems,2013,14(10):4608-4622.

    Google Scholar

    [4] 张英,冯建赟,何治亮,等. 地热系统类型划分与主控因素分析[J]. 地学前缘,2017,24(3):190-198.

    Google Scholar

    [5] GLUYAS J,AULD A,ADAMS C,et al. Geothermal Potential of the Global Oil Industry[M]. Renewable Geothermal Energy Explorations,2019:1-11.

    Google Scholar

    [6] 姜素华,张雯,李三忠,等. 西北太平洋洋陆过渡带新生代盆地构造演化与油气分布特征[J]. 大地构造与成矿学,2019,43(4):839-857.

    Google Scholar

    [7] 郝春艳. 陆海统筹下的中国大地热流分布格局与构造意义[D]. 南京:南京大学,2016.

    Google Scholar

    [8] 栾锡武,张训华. 东海及琉球沟弧盆系的海底热流测量与热流分布[J]. 地球物理学进展,2003,18(4):670-678. doi: 10.3969/j.issn.1004-2903.2003.04.017

    CrossRef Google Scholar

    [9] 梁振君. 中国海上最大高温高压气田东方13-2气田投产[N]. 海南日报,2020-11-26(A01).

    Google Scholar

    [10] AULD A,HOGG S,BERSON A,et al. Power production via North Sea hot brines[J]. Energy,2014,78:674-684.

    Google Scholar

    [11] ODUMODU C F R,MODE A W. Geothermal gradients and heat flow variations in parts of the eastern Niger Delta,Nigeria[J]. Journal of the Geological Society of India,2016,88:107-118. doi: 10.1007/s12594-016-0463-0

    CrossRef Google Scholar

    [12] HIRIART G,PROL-LEDESMA R M,ALCOCER S,et al. Submarine geothermics:hydrothermal vents and electricity generation[C]. Proceedings World Geothermal Congress,2010:1-6.

    Google Scholar

    [13] KARASON B. Utilization of offshore geothermal resources for power production[D]. Reykjavík:Reykjavik University,2013.

    Google Scholar

    [14] ARYADI Y,RIZAL I S,FADHLI M N. Electricity generation from hydrothermal vents[C]. IOP Conference Series:Earth and Environmental Science,2016:42.

    Google Scholar

    [15] YU X,WU S J,YANG C J. Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter[J]. Applied energy,2016,164:620-627. doi: 10.1016/j.apenergy.2015.12.036

    CrossRef Google Scholar

    [16] ARMANI F B,PALTRINIERI D. Perspectives of offshore geothermal energy in Italy[C]. EPJ Web of Conferences:EDP Sciences,2013,54:02001.

    Google Scholar

    [17] PRABOWO T R,FAUZIYYAH F,BRONTO S. A new idea:the possibilities of offshore geothermal system in Indonesia marine volcanoes[C]. IOP Conference Series:Earth and Environmental Science,2017,103:1-15.

    Google Scholar

    [18] COSTELLO M J,CHAUDHARY C. Marine biodiversity,biogeography,deep-sea gradients,and conservation[J]. Current Biology,2017,27:511-527. doi: 10.1016/j.cub.2017.04.060

    CrossRef Google Scholar

    [19] 肖鹏,窦斌,田红,等. 开采海洋区域干热岩的可行性探讨[J]. 海洋地质前沿,2018,34(8):55-60.

    Google Scholar

    [20] 曲万隆,邢同菊,张建伟,等. 东营黄河三角洲地热资源特征及其开发利用[J]. 地质学报. 2019,93(S1):212-216.

    Google Scholar

    [21] 温广连. 渤海石油基地地热直供配套水源热泵供暖模式应用分析[J]. 区域供热,2014(5):12-22.

    Google Scholar

    [22] 赵利军. 大连鲁能易汤海洋温泉地热资源综合分析[J]. 中国资源综合利用,2020,38(6):102-104.

    Google Scholar

    [23] 王峰,雷霁霖. 半滑舌鳎工厂化循环水养殖模式能值评价[J]. 中国工程科学,2015,17(1):4-10. doi: 10.3969/j.issn.1009-1742.2015.01.001

    CrossRef Google Scholar

    [24] 张效新,王淑生,韩红梅,等. 地热深井卤水配兑黄河淡水工厂化养殖凡纳滨对虾试验[J]. 河北渔业,2016(1):32-34. doi: 10.3969/j.issn.1004-6755.2016.01.010

    CrossRef Google Scholar

    [25] 闫欣,张成飞,季本安,等. 利用地下海水进行金乌贼亲体越冬养殖技术[J]. 科学养鱼,2020(12):63-64. doi: 10.3969/j.issn.1004-843X.2020.12.035

    CrossRef Google Scholar

    [26] AULD A,HOGG S,BERSON A,et al. Power production via North Sea hot brines[J]. Energy,2014,78:674-684. doi: 10.1016/j.energy.2014.10.056

    CrossRef Google Scholar

    [27] BANERJEE A,CHAKRABORTY T,MATSAGAR V. Evaluation of possibilities in geothermal energy extraction from oceanic crust using offshore wind turbine monopiles[J]. Renewable and Sustainable Energy Reviews,2018,92:685-700. doi: 10.1016/j.rser.2018.04.114

    CrossRef Google Scholar

    [28] 唐晓旭. 海上稠油多元热流体吞吐工艺研究及现场试验[J]. 中国海上油气,2011,23(3):185-188. doi: 10.3969/j.issn.1673-1506.2011.03.010

    CrossRef Google Scholar

    [29] HUANG S J,CAO M,CHENG L S. Experimental study on the mechanism of enhanced oil recovery by multi-thermal fluid in offshore heavy oil[J]. International Journal of Heat and Mass Transfer,2018,122:1074-1084. doi: 10.1016/j.ijheatmasstransfer.2018.02.049

    CrossRef Google Scholar

    [30] 王君,范毅. 稠油油藏的开采技术和方法[J]. 西部探矿工程,2006(7):84-85. doi: 10.3969/j.issn.1004-5716.2006.07.040

    CrossRef Google Scholar

    [31] 郭太现,苏彦春. 渤海油田稠油油藏开发现状和技术发展方向[J]. 中国海上油气,2013,25(4):26-30.

    Google Scholar

    [32] 朱旭晨,刘汝敏,王涛,等. 地热能辅助开采海上浅层稠油方法可行性分析[J]. 油气地质与采收率,2021,28(6):63-70.

    Google Scholar

    [33] 陈秋月,王中华,王婷,等. 利用地热能提高稠油油藏采收率的探索与实践[J]. 石油化工应用,2022,41(6):43-47. doi: 10.3969/j.issn.1673-5285.2022.06.010

    CrossRef Google Scholar

    [34] 程聪,姜涛,匡增桂,等. 天然气水合物系统特征及其对我国水合物勘查的启示[J]. 地质科技情报,2019,38(4):30-40.

    Google Scholar

    [35] 毛佩筱,吴能友,宁伏龙,等. 不同井型下的天然气水合物降压开采产气产水规律[J]. 天然气工业,2020,40(11):168-176. doi: 10.3787/j.issn.1000-0976.2020.11.020

    CrossRef Google Scholar

    [36] ULLERICH J W,SELIM M S,SLOAN E D. Theory and measurement of hydrate dissociation[J]. AIChE Journal,1987,33:747-752. doi: 10.1002/aic.690330507

    CrossRef Google Scholar

    [37] YOUSIF M H,ABASS H H,SELIM M S,et al. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE Reservoir Evaluation & Engineering,1991,6:69-76.

    Google Scholar

    [38] 宁伏龙,蒋国盛,汤凤林,等. 利用地热开采海底天然气水合物[J]. 天然气工业,2006,26(12):136-138. doi: 10.3321/j.issn:1000-0976.2006.12.038

    CrossRef Google Scholar

    [39] LIU Y,HOU J,ZHAO H,et al. A method to recover natural gas hydrates with geothermal energy conveyed by CO2[J]. Energy,2018,144:265-278. doi: 10.1016/j.energy.2017.12.030

    CrossRef Google Scholar

    [40] 孙致学,朱旭晨,刘垒,等. 联合深层地热甲烷水合物开采方法及可行性评价[J]. 海洋地质与第四纪地质,2019,39(2):146-156.

    Google Scholar

    [41] 任红. 南海天然气水合物取样技术现状及发展建议[J]. 石油钻探技术,2020,48(4):89-93. doi: 10.11911/syztjs.2020045

    CrossRef Google Scholar

    [42] 王维希,张春生,吴颜雄,等. 联合深海地热开采天然气水合物技术展望[J]. 现代化工,2021,41(9):17-21.

    Google Scholar

    [43] CHEN X Y,DU X,YANG J,et al. Developing offshore natural gas hydrate from existing oil & gas platform based on a novel multilateral wells system:depressurization combined with thermal flooding by utilizing geothermal heat from existing oil & gas wellbore[J]. Energy,2022,258:124870. doi: 10.1016/j.energy.2022.124870

    CrossRef Google Scholar

    [44] 何宏舟,陈志强,蔡佳莹. 海洋温差能和地热能联合发电系统 [P] . 中国专利:CN102644565B. 2013-09-25.

    Google Scholar

    [45] 刘松堂,霍建玲,杨磊,等. 海底热流原位探测技术研究进展及趋势[J]. 海洋技术学报,2019,38(6):104-112.

    Google Scholar

    [46] DAVIS E E,VILLINGER H,MC DONALD R D. A robust rapid-response probe for measuring bottom-hole temperatures in deep-ocean boreholes [J]. Marine Geophysical Researches,1997,19:267-281. doi: 10.1023/A:1004292930361

    CrossRef Google Scholar

    [47] 刘松堂,李宏源,霍建玲,等. 热毯式海底热流原位探测系统设计[J]. 海洋技术学报,2019,38(4):39-44.

    Google Scholar

    [48] 杨小秋,曾信,石红才,等. 海底热流长期观测系统研制进展[J]. 地球物理学报,2022,65(2):427-447.

    Google Scholar

    [49] 窦玉玲,管志川,徐云龙. 海上钻井发展综述与展望[J]. 海洋石油,2006,26(2):64-67. doi: 10.3969/j.issn.1008-2336.2006.02.013

    CrossRef Google Scholar

    [50] 祝沛桢,李政航,程龙. 深海石油钻采机械发展现状及展望[J]. 科技经济导刊,2016(30):58

    Google Scholar

    [51] 刘健. 我国海洋钻机设备发展路径研究[J]. 中国工程科学,2020,22(6):40-48.

    Google Scholar

    [52] FEDER J. Geothermal well construction:a step change in oil and gas technologies [J]. Journal of Petroleum Technology. 2021,73(1):32-35.

    Google Scholar

    [53] 王社教,李峰,闫家泓,等. 油田地热资源评价方法及应用[J]. 石油学报,2020,41(5):45-56.

    Google Scholar

    [54] 饶松,高腾,肖红平,等. 中国油区地热开发利用进展[J]. 科技导报,2022,40(20):65-76.

    Google Scholar

    [55] 刘怀增,黄刚,郝晓鹏,等. 海洋石油平台拆除作业风险评估分析研究[J]. 山东化工,2015(13):103-104. doi: 10.3969/j.issn.1008-021X.2015.13.040

    CrossRef Google Scholar

    [56] 邓宗成,张颖,栾忠庆. 海上石油平台及管线弃置的海洋环境保护研究[J]. 油气田环境保护,2016(4):56-58. doi: 10.3969/j.issn.1005-3158.2016.04.018

    CrossRef Google Scholar

    [57] 张茂东. 我国海上退役油气平台再利用研究[J]. 海洋开发与管理,2021,38(7):62-67. doi: 10.3969/j.issn.1005-9857.2021.07.010

    CrossRef Google Scholar

    [58] SUI D,WIKTORSKI E,RØKSLAND M,et al. Review and investigations on geothermal energy extraction from abandoned petroleum wells[J]. Journal of Petroleum Exploration and Production Technology,2019,9:1135-1147. doi: 10.1007/s13202-018-0535-3

    CrossRef Google Scholar

    [59] KUREVIJA T,VULIN D. High enthalpy geothermal potential of the deep gas fields in central Drava basin,Croatia[J]. Water Resources Management,2011,25:30413052.

    Google Scholar

    [60] LUND J W,FREESTON D H,BOYD T L. Direct utilization of geothermal energy 2010 worldwide review[J]. Geothermics,2011,40(3):159-180. doi: 10.1016/j.geothermics.2011.07.004

    CrossRef Google Scholar

    [61] KHARSEH M,AL-KHAWAJA M,HASSANI F. Utilization of oil wells for electricity generation:performance and economics[J]. Energy,2015,90:910-916. doi: 10.1016/j.energy.2015.07.116

    CrossRef Google Scholar

    [62] BU X,MA W,LI H. Geothermal energy production utilizing abandoned oil and gas wells[J]. Renew Energy,2012,41:80-85. doi: 10.1016/j.renene.2011.10.009

    CrossRef Google Scholar

    [63] TEMPLETON J D,GHOREISHI-MADISEH S A,HASSANI F. Abandoned petroleum wells as sustainable sources of geothermal energy[J]. Energy,2014,70:366-373. doi: 10.1016/j.energy.2014.04.006

    CrossRef Google Scholar

    [64] ENGLISH J M,ENGLISH K L,DUNPHY R B,et al. An overview of deep geothermal energy and its potential on the island of ireland[J]. First Break,2023,41. 33-43.

    Google Scholar

    [65] MALEK A E,ADAMS B M,ROSSI E,et al. Electric power generation,specific capital cost,and specific power for advanced geothermal systems[C]. Stanford,California,USA:Proceeding of 46th Workshop on Geothermal Reservoir Engineering,2021,15-17.

    Google Scholar

    [66] GHOLAMIAN E,HABIBOLLAHZADE A,ZARE V. Development and multi-objective optimization of geothermal-based organic Rankine cycle integrated with thermoelectric generator and proton exchange membrane electrolyzer for power and hydrogen production[J]. Energy Conversion and Management,2018,174:112-125. doi: 10.1016/j.enconman.2018.08.027

    CrossRef Google Scholar

    [67] 黄雅婷,陶乐仁,黄理浩,等. 有机朗肯循环系统研究综述[J]. 有色金属材料与工程,2018,39(1):57-62.

    Google Scholar

    [68] HINTERLEITNER B,KNAPP I,PONEDER M,et al. Thermoelectric performance of a metastable thin-film Heusler alloy[J]. Nature,2019,576,85-90.

    Google Scholar

    [69] WANG K,YUAN B,JI G,et al. A comprehensive review of geothermal energy extraction and utilization in oilfields[J]. Journal of Petroleum Science and Engineering,2018,168:465-477. doi: 10.1016/j.petrol.2018.05.012

    CrossRef Google Scholar

    [70] CLARK C W,ELLISON W T,SOUTHALL B L,et al. Acoustic masking in marine ecosystems:intuitions,analysis,and implication[J]. Marine Ecology Progress Series,2009,395:201-222. doi: 10.3354/meps08402

    CrossRef Google Scholar

    [71] COPPING A,BATTEY H,BROWN-SARACINO J,et al. An international assessment of the environmental effects of marine energy development[J]. Ocean & Coastal Management,2014,99:3-13.

    Google Scholar

    [72] INGRAM D M,SMITH G H,BITTENCOURT-FERREIRA C,et al. Protocols for the equitable assessment of marine energy converters[M]. Edinburgh:University of Edinburgh,2011.

    Google Scholar

    [73] PEDAMALLU L R,NEVES R J,RODRIGUES N E,et al. Environmental impacts of offshore geothermal energy[J]. Transacions,2018,42:825-834.

    Google Scholar

    [74] TESTER J,HERZOG H,CHEN Z,et al. Prospects for universal geothermal energy from heat mining[J]. Science & Global Security,1994,5(1):99-121.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(1336) PDF downloads(398) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint