2024 Vol. 40, No. 6
Article Contents

LI Yueer, YU Kefu. Coral records of Holocene ENSO and its revealed mechanism[J]. Marine Geology Frontiers, 2024, 40(6): 13-25. doi: 10.16028/j.1009-2722.2023.127
Citation: LI Yueer, YU Kefu. Coral records of Holocene ENSO and its revealed mechanism[J]. Marine Geology Frontiers, 2024, 40(6): 13-25. doi: 10.16028/j.1009-2722.2023.127

Coral records of Holocene ENSO and its revealed mechanism

More Information
  • The El Niño-Southern Oscillation (ENSO) is the strongest interannual oscillation in the Earth's climate system, which has a significant impact on global weather and climate. The Holocene is the geological time most closely related to humans, and reconstructing the activity history of ENSO and exploring the change pattern of ENSO in this period will help to improve the accuracy of future ENSO prediction. In this regard, based on coral, a high-resolution climate record carrier of tropical oceans, we firstly introduce the method of extracting ENSO signal from coral skeleton index and measuring ENSO variability; then compares the history of ENSO variability in early, middle and late Holocene; and finally summarizes the mechanism of ENSO variability in different time scales in Holocene based on coral record. The results show that the ENSO signals in the coral records can be directly identified from the extreme changes of their environmental proxies; or the ENSO cycles of the environmental proxies on the time series can be extracted by spectral analysis and filtering, and then the frequency and amplitude changes of ENSO can be quantitatively analyzed by using threshold analysis and sliding window methods. The coral records show that the Holocene ENSO is characterized by fluctuating changes, with a general trend of decreasing ENSO variability from the early to middle Holocene and increasing ENSO variability in the late Holocene. Based on the coral record, it is concluded that the change in surface solar radiation distribution due to the age difference is the main factor of the century-millennium scale ENSO variation in the Holocene, while the internal drive of the climate system may be the main reason for the interannual-interdecadal scale ENSO fluctuation in the Holocene. However, compared with the long time span of the Holocene, the accumulated time window of the coral record is only a few hundred years, which is far from revealing the patterns and mechanisms of ENSO activity. Therefore, it is necessary to further extend the time series and increase the spatial area of the coral record in the future to reveal the patterns and mechanisms of ENSO variability.

  • 加载中
  • [1] CANE M A,ZEBIAK S E. A theory for El Niño and the Southern Oscillation [J]. Science,1985,228((4703):):1085-1087. doi: 10.1126/science.228.4703.1085

    CrossRef Google Scholar

    [2] ROPELEWSKI C F,HALPERT M S. Global and regional scale precipitation patterns associated with the El Niño Southern Oscillation [J]. Monthly Weather Review,1987,115((8):):1606-1626. doi: 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2

    CrossRef Google Scholar

    [3] TRENBERTH K E. The definition of El Niño[J]. Bulletin of the American Meteorological Society,1997,78(12):277-2777.

    Google Scholar

    [4] MCPHADEN M J. Playing hide and seek with El Niño [J]. Nature Climate Change,2015,5((9):):791-795. doi: 10.1038/nclimate2775

    CrossRef Google Scholar

    [5] ALEXANDER M A,BLADE I,NEWMAN M,et al. The atmospheric bridge:the influence of ENSO teleconnections on air-sea interaction over the global oceans [J]. Journal of Climate,2002,15((16):):2205-2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2

    CrossRef Google Scholar

    [6] MCPHADEN M J,ZEBIAK S E,Glantz M H. ENSO as an integrating concept in Earth science [J]. Science,2006,314((5806):):1740-1745. doi: 10.1126/science.1132588

    CrossRef Google Scholar

    [7] CAI W J,SANTOSO A,COLLINS M,et al. Changing El Niño-Southern Oscillation in a warming climate [J]. Nature Reviews Earth & Environment,2021,2((9):):628-644.

    Google Scholar

    [8] FENG X R,LI M J,LI Y L,et al. Typhoon storm surge in the southeast Chinese mainland modulated by ENSO [J]. Scientific Reports,2021,11((1):):10137-10137. doi: 10.1038/s41598-021-89507-7

    CrossRef Google Scholar

    [9] REINIG F,WACKER L,JÖRIS O,et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas[J]. Nature,2021,595(7865):66-69. doi: 10.1038/s41586-021-03608-x

    CrossRef Google Scholar

    [10] LAMB H H. Climatic history and the future,Volume 2:climate:present,past and future [M]. London,England:Methuen and Co. Ltd,1977,1-835.

    Google Scholar

    [11] ALLEY R B,MAYEWSKI P A,SOWERS T,et al. Holocene climatic instability:a prominent widespread event 8200a ago [J]. Geology,1997,25((6):):483-486. doi: 10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2

    CrossRef Google Scholar

    [12] WALKER M J C,BERKELHAMMER M,BJÖRCK S,et al. Formal subdivision of the Holocene Series/Epoch:a discussion paper by a working group of INTIMATE (Integration of ice-core,marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission On Stratigraphy)[J]. Journal of Quaternary Science,2012,27(7):649-659. doi: 10.1002/jqs.2565

    CrossRef Google Scholar

    [13] COHEN K M,HARPER D A T,GIBBARD P L. ICS International Chronostratigraphic Chart 2022/02. International Commission on Stratigraphy,IUGS. www. Stratigraphy. Org,2022.

    Google Scholar

    [14] THOMPSON L G,MOSLEY-THOMPSON E,DAVIS M E,et al. Annually resolved ice core records of tropical climate variability over the past ~1800 years [J]. Science,2013,340((6135):):945-950. doi: 10.1126/science.1234210

    CrossRef Google Scholar

    [15] COOK E R,ANCHUKAITIS K J,BUCKLEY B M,et al. Asian monsoon failure and megadrought during the last millennium [J]. Science,2010,328((5977):):486-489. doi: 10.1126/science.1185188

    CrossRef Google Scholar

    [16] THEAKER C M, CAROLIN S A, DAY C C, et al. Borneo Stalagmite evidence of significantly reduced El Niño-Southern Oscillation variability at 4.1 ky BP[J]. Geophysical Research Letters,2024,51:e2023GL107111.

    Google Scholar

    [17] FORD H L,RAVELO A C,POLISSAR P J. Reduced El Niño-Southern Oscillation during the Last Glacial Maximum [J]. Science,2015,347((6219):):255-258. doi: 10.1126/science.1258437

    CrossRef Google Scholar

    [18] JENNY B, VALERO-GARCÉS B L, VILLA-MARTÍNEZ R, et al. Early to mid-Holocene aridity in central Chile and the southern westerlies: the Laguna Aculeo record (34°S) [J]. Quaternary Research,2002,58((2):):160-170.

    Google Scholar

    [19] ROSENTHAL Y,BROCCOLI A J. In search of Paleo-ENSO[J]. Science,2004,304(5668):219-221. doi: 10.1126/science.1095435

    CrossRef Google Scholar

    [20] CANE M A. The evolution of El Niño,past and future[J]. Earth and Planetary Science Letters,2005,230(2/3):227-240.

    Google Scholar

    [21] Ma T Y. On the growth rate of reef corals and its relation to sea water temperature[J]. Palaeontologia Sinica (Series B),1937,6:21-22.

    Google Scholar

    [22] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学,2012,42(8):1160-1172.

    Google Scholar

    [23] ALIBERT C,MCCULLOCH M T. Strontium/Calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature:calibration of the thermometer and monitoring of ENSO[J]. Paleoceanography,1997,12(3):345-363. doi: 10.1029/97PA00318

    CrossRef Google Scholar

    [24] COLE J E,FAIRBANKS R G. The Southern Oscillation recorded in the δ18O of corals from Tarawa atoll[J]. Paleoceanography,1990,5(5):669-683. doi: 10.1029/PA005i005p00669

    CrossRef Google Scholar

    [25] MCCULLOCH M T,GAGAN M K,MORTIMER G E,et al. A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef,Australia,and the 1982-1983 El-Niño[J]. Geochimica et Cosmochimica Acta,1994,58(12):2747-2754. doi: 10.1016/0016-7037(94)90142-2

    CrossRef Google Scholar

    [26] 丁仲礼. 固体地球科学研究方法[M]. 北京:科学出版社,2013:566-579.

    Google Scholar

    [27] 张剑,刁少波,贺行良,等. 西沙群岛珊瑚礁测年与解析[J]. 海洋地质前沿,2021,37(10):64-69.

    Google Scholar

    [28] 李献华,李扬,李秋立,等. 同位素地质年代学新进展与发展趋势[J]. 地质学报,2022,96(1):104-122.

    Google Scholar

    [29] COBB K M,CHARLES C D,CHENG H,et al. El Niño Southern Oscillation and tropical Pacific climate during the last millennium[J]. Nature,2003,424(6946):271-276. doi: 10.1038/nature01779

    CrossRef Google Scholar

    [30] HAN T,YU K F,YAN H,et al. Coral δ18O-based reconstruction of El Niño-Southern Oscillation from the northern South China Sea since 1851 AD[J]. Quaternary International,2020,550:159-168.

    Google Scholar

    [31] MCGREGOR H V,FISCHER M J,GAGAN M K,et al. A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300 years ago[J]. Nature Geoscience,2013,6(11):949-953. doi: 10.1038/ngeo1936

    CrossRef Google Scholar

    [32] MCGREGOR H V,GAGAN M K. Western Pacific coral Δ18O records of anomalous Holocene variability in the El Niño–Southern Oscillation[J]. Geophysical Research Letters,2004,31(11):L11204.

    Google Scholar

    [33] MCGREGOR S,TIMMERMANN A,TIMM O. A unified proxy for ENSO and PDO variability since 1650[J]. Climate of the Past,2010,6(1):1-17. doi: 10.5194/cp-6-1-2010

    CrossRef Google Scholar

    [34] COLE J E,DUNBAR R B,MCCLANAHAN T R,et al. Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries[J]. Science,2000,287(5453):617-619. doi: 10.1126/science.287.5453.617

    CrossRef Google Scholar

    [35] LEONARD N D. ,WELSH K J,LOUGH J M,et al. Evidence of reduced Mid-Holocene ENSO variance on the Great Barrier Reef,Australia[J]. Paleoceanography,2016,31:1248-1260. doi: 10.1002/2016PA002967

    CrossRef Google Scholar

    [36] COMBOUL M,EMILE-GEAY J,HAKIM G J,et al. Paleoclimate sampling as a sensor placement problem[J]. Journal of Climate,2015,28(19):7717-7740.

    Google Scholar

    [37] KILBOURNE K H,QUINN T M,TAYLOR F W. A fossil coral perspective on western tropical Pacific climate ~350 ka[J]. Paleoceanography,2004,19(1):63-79.

    Google Scholar

    [38] HEREID K A,QUINN T M,OKUMURA Y M. Assessing spatial variability in El Niño-Southern Oscillation event detection skill using coral geochemistry[J]. Paleoceanography,2013,28(1):14-23. doi: 10.1029/2012PA002352

    CrossRef Google Scholar

    [39] CHAPPELL J,POLACH H. Post-glacial sea-level rise from a coral record at Huon Peninsula,Papua New Guinea[J]. Nature,1991,349(6305):147-149. doi: 10.1038/349147a0

    CrossRef Google Scholar

    [40] BECK J W,RÉCY J,TAYLOR F,et al. Abrupt changes in early Holocene tropical sea surface temperature derived from coral records[J]. Nature,1997,385(6618):705-707. doi: 10.1038/385705a0

    CrossRef Google Scholar

    [41] MCCULLOCH M,MORTIMER G,ESAT T,et al. High-resolution windows into Early Holocene climate:Sr/Ca coral records from the Huon Peninsula[J]. Earth and Planetary Science Letters,1996,138(1/4):169-178. doi: 10.1016/0012-821X(95)00230-A

    CrossRef Google Scholar

    [42] DRISCOLL R E. Reconstructions of the Holocene and Last Glacial Period[D]. Edinburgh:The University of Edinburgh,2014.

    Google Scholar

    [43] SHAO D,MEI Y J,YANG Z K,et al. Holocene ENSO variability in the South China Sea recorded by high-resolution oxygen isotope records from the shells of Tridacna spp.[J]. Scientific Reports,2020,10(1):3921. doi: 10.1038/s41598-020-61013-2

    CrossRef Google Scholar

    [44] LIU Z Y,LU Z Y,WEN X Y,et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years[J]. Nature,2014,515(7528):550-553. doi: 10.1038/nature13963

    CrossRef Google Scholar

    [45] MA Y F,QIN Y M,YU K F,et al. Holocene coral reef development in Chenhang Island,northern South China Sea,and its record of sea level changes[J]. Marine Geology,2021,440:106593.

    Google Scholar

    [46] TUDHOPE A W,CHILCOTT C P,MCCULLOCH M T,et al. Variability in the El Niño–Southern Oscillation through a glacial interglacial cycle[J]. Science,2001,291(5508):1511-1517. doi: 10.1126/science.1057969

    CrossRef Google Scholar

    [47] RODBELL D T,SELTZER G O,ANDERSON D M,et al. An ~15,000-year record of El Niño-driven alluviation in southwestern Ecuador[J]. Science,1999,283(5401):516-520. doi: 10.1126/science.283.5401.516

    CrossRef Google Scholar

    [48] MOY C M,SELTZER G O,RODBELL D T,et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature,2002,420(6912):162-165. doi: 10.1038/nature01194

    CrossRef Google Scholar

    [49] CARRÉ M,SACHS J P,PURCA S,et al. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific[J]. Science,2014,345(6200):1045-1048. doi: 10.1126/science.1252220

    CrossRef Google Scholar

    [50] CHEN S,HOFFMANN S S,LUND D C,et al. A high-resolution speleothem record of western equatorial Pacific rainfall:implications for Holocene ENSO evolution[J]. Earth and Planetary Science Letters,2016,442((1):):61-71.

    Google Scholar

    [51] ABRAM N J,MCGREGOR H V,GAGAN M K,et al. Oscillations in the southern extent of the Indo-Pacific Warm Pool during the Mid-Holocene[J]. Quaternary Science Reviews,2009,28(25/26):2794-2803.

    Google Scholar

    [52] MCGREGOR H V,GAGAN M K,MCCULLOCH M T,et al. Mid-Holocene Variability in the marine 14C reservoir age for northern coastal Papua New Guinea[J]. Quaternary Geochronology,2008,3(3):213-225. doi: 10.1016/j.quageo.2007.11.002

    CrossRef Google Scholar

    [53] YU K F,HUA Q A,ZHAO J X,et al. Holocene marine 14C reservoir age variability:evidence from 230Th-dated corals in the South China Sea[J]. Paleoceanography,2010,25(3):PA3205.

    Google Scholar

    [54] COBB K M,WESTPHAL N,SAYANI H R,et al. Highly variable El Niño-Southern Oscillation throughout the Holocene[J]. Science,2013,339(6115):67-70. doi: 10.1126/science.1228246

    CrossRef Google Scholar

    [55] WOODROFFE C D,BEECH M R,GAGAN M K. Mid-Late Holocene El Niño variability in the Equatorial Pacific from coral microatolls[J]. Geophysical Research Letters,2003,30(7):1358.

    Google Scholar

    [56] TOTH L T,ARONSON R B,COBB K M,et al. Climatic and biotic thresholds of coral-reef shutdown[J]. Nature Climate Change,2015,5(4):369-374. doi: 10.1038/nclimate2541

    CrossRef Google Scholar

    [57] DUPREY N,LAZARETH C E,CORRÈGE T,et al. Early Mid-Holocene SST variability and surface-ocean water balance in the southwest Pacific[J]. Paleoceanography,2012,27(4):PA4207.

    Google Scholar

    [58] WEI G J,DENG W F,YU K F,et al. Sea surface temperature records in the northern South China Sea from Mid-Holocene coral Sr/Ca ratios[J]. Paleoceanography,2007,22(3):PA3206.

    Google Scholar

    [59] LAZARETH C E,ROSELL M B,TURCQ B,et al. Mid-Holocene climate in New Caledonia (southwest Pacific):coral and PMIP models monthly resolved results[J]. Quaternary Science Reviews,2013,69:83-97.

    Google Scholar

    [60] DANG S H,YU K F,TAO S C,et al. El Niño/Southern Oscillation during the 4.2 ka event recorded by growth rates of corals from the north South China Sea[J]. Acta Oceanologica Sinica,2020,39(1):110-117. doi: 10.1007/s13131-019-1520-5

    CrossRef Google Scholar

    [61] BERNAL J P,LACHNIET M,MCCULLOCH M,et al. A speleothem record of Holocene climate variability from southwestern Mexico[J]. Quaternary Research,2011,75(1):104-113. doi: 10.1016/j.yqres.2010.09.002

    CrossRef Google Scholar

    [62] ZHOU P C,YAN H,HAN T,et al. Mid to late Holocene ENSO variability reconstructed by high-resolution Tridacna Sr/Ca records from the northern part of the South China Sea[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,601:111117.

    Google Scholar

    [63] DU X J,HENDY I,HINNOV L,et al. High-resolution interannual precipitation reconstruction of Southern California:implications for Holocene ENSO evolution[J]. Earth and Planetary Science Letters,2021,554:116670. doi: 10.1016/j.jpgl.2020.116670

    CrossRef Google Scholar

    [64] NIE S Y,XIAO W S,WANG R J. Mid-Late Holocene climate variabilities in the Bransfield Strait,Antarctic Peninsula driven by insolation and ENSO activities[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,601:111140.

    Google Scholar

    [65] TOTH L T,ARONSON R B. The 4.2 ka event,ENSO,and coral reef development[J]. Climate of the Past,2019,15(1):105-119. doi: 10.5194/cp-15-105-2019

    CrossRef Google Scholar

    [66] CORRÈGE T,DELCROIX T,RÉCY J,et al. Evidence for stronger El Niño–Southern Oscillation (ENSO) events in a Mid-Holocene massive coral[J]. Paleoceanography,2000,15(4):465-470. doi: 10.1029/1999PA000409

    CrossRef Google Scholar

    [67] GIRY C,FELIS T,KÖLLING M,et al. Mid- to Late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals[J]. Earth and Planetary Science Letters,2012,331(1):187-200.

    Google Scholar

    [68] URBAN F E,COLE J E,OVERPECK J T. Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record[J]. Nature,2000,407(6807):989-993. doi: 10.1038/35039597

    CrossRef Google Scholar

    [69] SANCHEZ S C,WESTPHAL N,HAUG G H,et al. A continuous record of central tropical Pacific climate since the midnineteenth century reconstructed from Fanning and Palmyra Island corals:a case study in coral data reanalysis[J]. Paleoceanography,2020,35(8):e2020PA003848.

    Google Scholar

    [70] THOMPSON D M,COLE J E,SHEN G T,et al. Early twentieth-century warming linked to Tropical Pacific wind strength[J]. Nature Geoscience,2015,8(2):117-121. doi: 10.1038/ngeo2321

    CrossRef Google Scholar

    [71] GROTHE P R,COBB K M,LIGUORI G,et al. Enhanced El Niño–Southern Oscillation variability in recent decades[J]. Geophysical Research Letters,2020,47(7):1-8.

    Google Scholar

    [72] TOTH L T,ARONSON R B,VOLLMER S V,et al. ENSO drove 2500-year collapse of eastern Pacific coral reefs[J]. Science,2012,337(6090):81-84. doi: 10.1126/science.1221168

    CrossRef Google Scholar

    [73] GUILDERSON T P,SCHRAG D P. Abrupt shift in subsurface temperatures on the tropical Pacific associated with changes in El Niño[J]. Science,1998,281(5374):240-243. doi: 10.1126/science.281.5374.240

    CrossRef Google Scholar

    [74] DUNBAR R B,WELLINGTON G M,COLGAN M W,et al. Eastern Pacific sea surface temperature since 1600 A.D.:the δ18O record of climate variability in Galápagos Corals[J]. Paleoceanography,1994,9((2):):291-315. doi: 10.1029/93PA03501

    CrossRef Google Scholar

    [75] JIANG L L,YU K F,HAN T,et al. Coral perspective on temperature seasonality and interannual variability in the northern South China Sea during the Roman Warm Period[J]. Global and Planetary Change,2021,207:103675. doi: 10.1016/j.gloplacha.2021.103675

    CrossRef Google Scholar

    [76] JIANG L L,YU K F,TAO S C,et al. Abrupt increase in ENSO variability at 700 CE triggered by solar activity[J]. Journal of Geophysical Research:Oceans,2023,128(1):e2022JC019278.

    Google Scholar

    [77] JIANG L L,YU K F,TAO S C,et al. ENSO Variability during the medieval climate anomaly as recorded by Porites corals from the northern South China Sea[J]. Paleoceanography and Paleoclimatology,2021,36(4):e2020PA004173. doi: 10.1029/2020PA004173

    CrossRef Google Scholar

    [78] QUINN T M,TAYLOR F W,CROWLEY T J. Coral-based climate variability in the Western Pacific Warm Pool since 1867[J]. Journal of Geophysical Research,2006,111:C11006.

    Google Scholar

    [79] TUDHOPE A W,SHIMMIELD G B,CHILCOTT C P,et al. Recent changes in climate in the far western equatorial Pacific and their relationship to the Southern Oscillation; oxygen isotope records from massive corals,Papua New Guinea[J]. Earth and Planetary Science Letters,1995,136(3):575-590.

    Google Scholar

    [80] LEUPOLD M,PFEIFFER M,WATANABE T K,et al. El Niño-Southern Oscillation and internal sea surface temperature variability in the tropical Indian Ocean since 1675[J]. Climate of the Past,2021,17(1):151-170. doi: 10.5194/cp-17-151-2021

    CrossRef Google Scholar

    [81] TARIQUE M,RAHAMAN W,THAMBAN M,et al. Surface pH Record (1990–2013) of the Arabian Sea from Boron isotopes of Lakshadweep corals:trend,variability,and control[J]. Journal of Geophysical Research:Biogeosciences,2021,126(7):e2020JG006122.

    Google Scholar

    [82] CLEMENT A C,SEAGER R,CANE M A. Suppression of El Niño during the Mid-Holocene by changes in the Earth's orbit[J]. Paleoceanography,2000,15(6):731-737. doi: 10.1029/1999PA000466

    CrossRef Google Scholar

    [83] DANG H W,JIAN Z M,WANG Y,et al. Pacific Warm Pool subsurface heat sequestration modulated Walker Circulation and ENSO activity during the Holocene[J]. Science Advances,2020,6(42):eabc0402. doi: 10.1126/sciadv.abc0402

    CrossRef Google Scholar

    [84] 汪品先. 地球系统与演变[M]. 北京:科学出版社,2018:291-415.

    Google Scholar

    [85] EMILE-GEAY J,COBB K M,CARRÉ M,et al. Links between tropical Pacific seasonal,interannual and orbital variability during the Holocene[J]. Nature Geoscience,2016,9(2):168-173. doi: 10.1038/ngeo2608

    CrossRef Google Scholar

    [86] DEE S G,COBB K M,EMILE-GEAY J,et al. No consistent ENSO response to volcanic forcing over the last millennium[J]. Science,2020,367(6485):1477-1481. doi: 10.1126/science.aax2000

    CrossRef Google Scholar

    [87] ZHU F,EMILE-GEAY J,ANCHUKAITIS K J,et al. A re-appraisal of the ENSO response to volcanism with paleoclimate data assimilation[J]. Nature Communications,2022,13(1):747. doi: 10.1038/s41467-022-28210-1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1184) PDF downloads(2100) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint