2024 Vol. 40, No. 7
Article Contents

LI Shuai, YU Weizhe, QIN Lanzhi, ZHANG Can. Sand-controlling model of source–slope-break coupling in Pinghu Slope Belt, Xihu Sag[J]. Marine Geology Frontiers, 2024, 40(7): 36-44. doi: 10.16028/j.1009-2722.2023.119
Citation: LI Shuai, YU Weizhe, QIN Lanzhi, ZHANG Can. Sand-controlling model of source–slope-break coupling in Pinghu Slope Belt, Xihu Sag[J]. Marine Geology Frontiers, 2024, 40(7): 36-44. doi: 10.16028/j.1009-2722.2023.119

Sand-controlling model of source–slope-break coupling in Pinghu Slope Belt, Xihu Sag

  • Pinghu Slope Belt has become one of the important fields of lithologic reservoir exploration in the Xihu Sag. Exploration and production have confirmed that the distribution of sand bodies in the Pinghu Formation is complex, and sand body characterization guided by sand-controlling model has become the key to the breakthrough of lithologic reservoir exploration. Based on the studies on the source system and slope-break zone, the distribution characteristics of sand body under the control of source and slope-break coupling in the target area were summarized in this paper. The characteristics of ravines and heavy minerals indicate that there are three source systems in the target area: the western source and southwestern source of Haijiao Uplift, and the dynamic source of Baoyunting paleo-uplift, which controlled the source of sand material in the target area. Under the control of paleo-uplift, differential activities of faults and sedimentation, three types of slope-breaks developed in the target area, namely faulted slope-breaks, flexural slope-breaks, and depositional slope-breaks, controlled jointly the topographic features of the target area. Source system and slope-break coupling controlled the dynamic process of sediment from source to sink. Under the joint control of the southwestern source and the dynamic source of Baoyunting Uplift, the development of mixed-source sand body accretion is dominant in the lower member of Pinghu Formation. Under the main control of the source of the western Haijiao Uplift, the single-source-reformation sand-controlling mode restricted by flexural slope-break is dominant in the middle member of Pinghu Formation. Under the main control of the depositional slope break, the transitional sand-controlling mode of gentle slope was developed in the upper member of Pinghu Formation.

  • 加载中
  • [1] 肖晓光,秦兰芝,张武,等. 西湖凹陷西斜坡平湖组储层特征及致密化过程分析[J]. 海洋地质前沿,2023,39(4):34-45.

    Google Scholar

    [2] 吴峰,任培罡,谈明轩,等. 东海西湖凹陷孔雀亭地区平湖组沉积相演变及其主控因素分析[J]. 海洋地质与第四纪地质,2022,42(2):119-130.

    Google Scholar

    [3] 周瑞琦,傅恒,徐国盛,等. 东海陆架盆地西湖凹陷平湖组—花港组沉积层序[J]. 沉积学报,2018,36(1):132-141.

    Google Scholar

    [4] 秦兰芝,刘金水,李帅,等. 东海西湖凹陷中央反转带花港组锆石特征及物源指示意义[J]. 石油实验地质,2017,39(4):498-504,526. doi: 10.11781/sysydz201704498

    CrossRef Google Scholar

    [5] 刘英辉,蔡华,段冬平,等. 西湖凹陷平湖地区平湖组海侵体系域潮控三角洲-潮坪沉积特征及模式[J]. 海洋地质前沿,2022,38(1):33-40.

    Google Scholar

    [6] 蒋一鸣,周倩羽,李帅,等. 西湖凹陷西部斜坡带平湖组含煤岩系沉积环境再思考[J]. 中国煤炭地质,2016,28(8):18-25. doi: 10.3969/j.issn.1674-1803.2016.08.04

    CrossRef Google Scholar

    [7] 张绍亮,蒋一鸣. 西湖凹陷平湖斜坡带始新统平湖组层序地层[J]. 海洋地质前沿,2013,29(10):8-13.

    Google Scholar

    [8] 杨彩虹,孙鹏,田超,等. 东海盆地西湖凹陷平湖组异常高压分布及形成机制探讨[J]. 海洋石油,2013,33(3):8-12.

    Google Scholar

    [9] 魏恒飞,陈践发,郭旺,等. 西湖凹陷平湖组层序地层划分和聚煤特征[J]. 吉林大学学报(地球科学版),2013,43(3):669-679.

    Google Scholar

    [10] 刘大明,孙占营,杨鹏涛,等. 青海省达卡地区三叠系巴颜喀拉山群岩石学特征及物源分析[J]. 地质科技情报,2018,37(2):71-78.

    Google Scholar

    [11] 何昕锴,李晓龙,赵洪,等. 东海西湖凹陷碎屑岩物源聚类分析[J]. 海洋地质前沿,2020,36(6):11-19.

    Google Scholar

    [12] 宁泽,徐磊,林学辉,等. 东海东北部陆架表层沉积物碎屑矿物分布及其物源分析[J]. 海洋地质与第四纪地质,2022,42(5):58-69.

    Google Scholar

    [13] 曾小明,张辉,邹明生,等. 北部湾盆地乌石凹陷东区流三段物源分析及其对储层物性的控制[J]. 地质科技情报,2016,35(6):63-69.

    Google Scholar

    [14] 赖维成,宋章强,周心怀,等. “动态物源”控砂模式[J]. 石油勘探与开发,2010,37(6):763-768.

    Google Scholar

    [15] 肖子亢,丁文龙,曹自成,等. 塔中南缘断裂坡折带成因演化及对奥陶系优质礁滩体的控制作用[J]. 地质科技情报,2019,38(1):35-44.

    Google Scholar

    [16] 黄文凯,邱燕,彭学超,等. 南海北部海域中东部陆架坡折带类型与迁移演化及成因[J]. 海洋地质与第四纪地质,2021,41(3):1-11.

    Google Scholar

    [17] 冯有良,胡素云,李建忠,等. 准噶尔盆地西北缘同沉积构造坡折对层序建造和岩性油气藏富集带的控制[J]. 岩性油气藏,2018,30(4):14-25.

    Google Scholar

    [18] 刘豪,田立新,周心怀,等. 断陷湖盆坡折体系与剥蚀沉积响应:以黄河口凹陷古近系为例[J]. 中国海上油气,2017,29(4):28-38.

    Google Scholar

    [19] 侯国伟,刘金水,蔡坤,等. 东海丽水凹陷古新统源-汇系统及控砂模式[J]. 地质科技情报,2019,38(2):65-74.

    Google Scholar

    [20] 杜庆祥,郭少斌,曹中宏,等. 南堡凹陷南部沙一段控砂模式[J]. 吉林大学学报(地球科学版),2016,46(2):348-357.

    Google Scholar

    [21] 杨晓利,张自力,孙明,等. 同沉积断层控砂模式:以南堡凹陷南部地区Es1段为例[J]. 石油与天然气地质,2014,35(4):526-533. doi: 10.11743/ogg20140412

    CrossRef Google Scholar

    [22] 徐长贵. 陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式[J]. 中国海上油气,2013,25(4):1-11.

    Google Scholar

    [23] 罗群. 陆相断陷盆地坡折带成因类型及控砂模式:以南堡凹陷为例[J]. 油气地质与采收率,2008,15(6):10-13. doi: 10.3969/j.issn.1009-9603.2008.06.003

    CrossRef Google Scholar

    [24] 崔龙涛,张倩萍. 坡折带-物源耦合控砂模式在湖相盆地储层预测中的探讨:以松辽盆地西斜坡地区白垩系储层为例[J]. 石油地质与工程,2018,32(4):6-11. doi: 10.3969/j.issn.1673-8217.2018.04.002

    CrossRef Google Scholar

    [25] 杜晓东,彭光荣,吴静,等. 珠江口盆地阳江东凹始新统的源汇过程:碎屑锆石定年及物源示踪[J]. 海洋地质与第四纪地质,2021,41(6):124-137.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(238) PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint