2024 Vol. 40, No. 4
Article Contents

ZHANG Mingsheng, WANG Bingjie, WANG Xin, DAI Jianfang, XUE Mingwang. The internal structure of Liaozhong No.1 strike slip fault and its control on hydrocarbon accumulation: a case study of Jinzhou A Structure[J]. Marine Geology Frontiers, 2024, 40(4): 29-38. doi: 10.16028/j.1009-2722.2023.101
Citation: ZHANG Mingsheng, WANG Bingjie, WANG Xin, DAI Jianfang, XUE Mingwang. The internal structure of Liaozhong No.1 strike slip fault and its control on hydrocarbon accumulation: a case study of Jinzhou A Structure[J]. Marine Geology Frontiers, 2024, 40(4): 29-38. doi: 10.16028/j.1009-2722.2023.101

The internal structure of Liaozhong No.1 strike slip fault and its control on hydrocarbon accumulation: a case study of Jinzhou A Structure

  • The discovery of Jinzhou A Structure (JAS) in the Liaodong Bay, NE China, marks a breakthrough of oil-gas exploration in less-developed area of accommodated fault in the Liaozhong No.1 strike-slip fault (No.1 SSF) zone. To determine the main controlling factors of hydrocarbon accumulation in the JAS, based on drilling, logging, and seismic data, the No.1 SSF and its internal structure were anatomized in the JAS, and its controlling effect on hydrocarbon accumulation was clarified. Results show that first, the amplitude and P-wave velocity changed obviously near No.1 SSF. The range of these changes showed that the internal structure and the scale of the No.1 SSF increased from shallow to deep. Secondly, the internal structure of the No.1 SSF was revealed by using multi-well lateral comparison in bulk density (as in ZDEN), neutron porosity (as in CNCF), and delta compression time (as in DT) data, and by using dipole acoustic reflection imaging technology. Approaching to the No.1 SSF, the ZDEN data decreased first and then increased, while the CNCF and DT data showed the opposite trend, indicating the transition from surrounding rock to fault fracture zone and then to the fault core. Thirdly, the JAS in the No.1 SSF developed a dual structure composed of fault fracture zone and fault core. The fracture zone has good porosity and permeability, which is a favorable channel for vertical migration of oil and gas, while the fault core has poor porosity and permeability, which is conducive to lateral sealing of oil and gas.

  • 加载中
  • [1] BEN-ZION Y,SAMMIS C G. Characterization of fault zones[J]. Pure and Applied Geophysics,2003,160(3):677-715. doi: 10.1007/PL00012554

    CrossRef Google Scholar

    [2] 付晓飞,肖建华,孟令东. 断裂在纯净砂岩中的变形机制及断裂带内部结构[J]. 吉林大学学报(地球科学版),2014,13(1):25-35.

    Google Scholar

    [3] 付晓飞. 张性断裂带内部结构特征及油气运移和保存研究[J]. 地学前缘,2012,6(2):200-210.

    Google Scholar

    [4] RAWLING G C,GOODWIN L B,WILSON J L. Internal architecture,permeability structure,and hydrologic significance of contrasting fault-zone types[J]. Geology,2001,29(1):43-46. doi: 10.1130/0091-7613(2001)029<0043:IAPSAH>2.0.CO;2

    CrossRef Google Scholar

    [5] 陈伟,吴智平,侯峰,等. 断裂带内部结构特征及其与油气运聚关系[J]. 石油学报,2010,31(5):84-90.

    Google Scholar

    [6] 吴智平,陈伟,雪雁,等. 断裂带的结构特征及其对油气的输导和封闭性[J]. 地质学报,2010,84(4):570-578.

    Google Scholar

    [7] 王孝彦,高强,孟令东,等. 低-非孔隙岩石中走滑断裂带内部结构的形成演化[J]. 断块油气田,2015,22(6):681-685.

    Google Scholar

    [8] MENG L D,FU X F,WANG Y C,et al. Internal structure and sealing properties of the volcanic fault zones in Xujiaweizi Fault Depression,Songliao Basin,China[J]. Petroleum Exploration and Development,2014,41(2):165-174.

    Google Scholar

    [9] MITCHELL T M,FAULKNER D R. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements:a field study from the Atacama fault system,northern Chile[J]. Journal of Structural Geology,2009,31(8):802-816. doi: 10.1016/j.jsg.2009.05.002

    CrossRef Google Scholar

    [10] 周心怀,刘震,李潍莲. 辽东湾断陷油气成藏机理[M] . 北京:石油工业出版社,2009:24-26.

    Google Scholar

    [11] 徐长贵. 渤海走滑转换带及其对大中型油气田形成的控制作用[J]. 地球科学,2016,41(9):1548-1560.

    Google Scholar

    [12] 龚再升,蔡东升,张功成. 郯庐断裂对渤海海域东部油气成藏的控制作用[J]. 石油学报,2007,28(4):1-10. doi: 10.3321/j.issn:0253-2697.2007.04.001

    CrossRef Google Scholar

    [13] 吴奎,徐长贵,张如才,等. 辽中凹陷南洼走滑伴生构造带发育特征及控藏作用[J]. 中国海上油气,2016,28(3):54-60.

    Google Scholar

    [14] 朱伟林,米立军,龚再升. 渤海海域油气成藏与勘探[M]. 北京:科学出版社,2009:41-44.

    Google Scholar

    [15] 庆龙. 渤海海域构造形成演化与变形机制[M]. 北京:石油工业出版社,2012:76-78.

    Google Scholar

    [16] NICOLAISEN E A. Seismic characterization of fault zones for use in fault facies reservoir models[J]. Procedia Engineering,2009,20(3):435-444.

    Google Scholar

    [17] CSTCHINGS R D,RYMER M J,Goldman M,et al. High resolution seismic imaging of fault zones:methods and examples from the San Andreas Fault[C]. AGU Fall Meeting Abstracts,2011.

    Google Scholar

    [18] BOTTER C,CARDOZO N,HARDY S,et al. Mechanical Modelling and Seismic Imaging of Fault Zones[C]// Fault and Top Seals 2012,EAGE,Session:Geomechanical modelling in Seal Evaluation. 2012.

    Google Scholar

    [19] BOTTER C,CARDOZO N,HARDY S,et al. From mechanical modeling to seismic imaging of faults:a synthetic workflow to study the impact of faults on seismic[J]. Marine and Petroleum Geology,2014,57:187-207. doi: 10.1016/j.marpetgeo.2014.05.013

    CrossRef Google Scholar

    [20] BOTTER C,CARDOZO N,HARDY S,et al. Seismic characterisation of fault damage in 3D using mechanical and seismic modelling[J]. Marine and Petroleum Geology,2016,77:973-990. doi: 10.1016/j.marpetgeo.2016.08.002

    CrossRef Google Scholar

    [21] 刘伟,朱留芳,许东晖. 断裂带结构单元特征及其测井识别方法研究[J]. 测井技术,2013,37(5):495-498. doi: 10.3969/j.issn.1004-1338.2013.05.008

    CrossRef Google Scholar

    [22] ZHANG G,LI N,GUO H W,et al. Fracture identification based on remote detection acoustic reflection logging[J]. Applied Geophysics,2015,12(4):473-481. doi: 10.1007/s11770-015-0522-0

    CrossRef Google Scholar

    [23] 陈伟. 含油气盆地断裂带内部结构特征及其与油气运聚的关系[D]. 青岛:中国石油大学(华东),2011.

    Google Scholar

    [24] TANG X M,GLASSMAN H,PATTERSON D,et al. Single-well acoustic imaging in anisotropic formations[C]//SEG, San Antonio Annual Metting,2007:109-113.

    Google Scholar

    [25] 唐晓明,魏周拓,苏远大,等. 偶极横波远探测测井技术进展及其应用[J]. 测井技术,2013,37(4):333-340. doi: 10.3969/j.issn.1004-1338.2013.04.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(434) PDF downloads(208) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint