2023 Vol. 39, No. 6
Article Contents

ZHANG Xu, TIAN Yuan, WANG Jianqiang, ZHANG Penghui, CHEN Bin, TIAN Yuqing, DONG Chao, YIN Ping. Grid calculation of geological carbon sink capacity in coastal bays: a case study of Sanmen Bay[J]. Marine Geology Frontiers, 2023, 39(6): 46-54. doi: 10.16028/j.1009-2722.2022.303
Citation: ZHANG Xu, TIAN Yuan, WANG Jianqiang, ZHANG Penghui, CHEN Bin, TIAN Yuqing, DONG Chao, YIN Ping. Grid calculation of geological carbon sink capacity in coastal bays: a case study of Sanmen Bay[J]. Marine Geology Frontiers, 2023, 39(6): 46-54. doi: 10.16028/j.1009-2722.2022.303

Grid calculation of geological carbon sink capacity in coastal bays: a case study of Sanmen Bay

More Information
  • The burial rate of organic carbon in a bay is closely related to its geological carbon sink capacity. It is an important challenge to evaluate the ocean carbon sink capacity to support the “dual carbon” goal (carbon peaking and carbon neutrality). Taking the surface sediments and sediment core samples collected in 2019 in the Sanmen Bay, Zhejiang Province as the research object, the typical characteristics of the complex seabed topography, strong sea-land interaction, and active human activities in the bay area were studied comprehensively using particle size analysis, organic geochemical analysis, and 210Pb and 137Cs dating methods. A carbon sink grid calculation method based on the division of bathymetric topographic in the study area was explored, and the bay was divided into shallow tidal flat, deep-water channels, and underwater plain. In addition, the burial rates of organic carbon in different sedimentary environments were obtained. Therefore, a geological carbon sink evaluation model of the Sanmen Bay was established by using inverse distance weighted spatial interpolation. The calculation results show that the burial rate of organic carbon in the study area was 64.04 gC/m2·a. The annual buried amount of organic carbon was 89.71 GgC. Among them, the burial rate of organic carbon in the shallow tidal flat and deep-water channel areas was relatively high at 74.02 and 80.48 gC/m2·a, respectively, and that in the underwater plain area was 52.93 gC/m2·a.

  • 加载中
  • [1] SABINE C L,FEELY R A,GRUBER N J. The oceanic sink for anthropogenic CO2[J]. Science,2004,305(5682):367-371. doi: 10.1126/science.1097403

    CrossRef Google Scholar

    [2] BOYD P W,CLAUSTRE H,LEVY M,et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature,2019,568(7752):327-335. doi: 10.1038/s41586-019-1098-2

    CrossRef Google Scholar

    [3] CAI W J. Estuarine and coastal ocean carbon paradox:CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science,2011,3(1):123. doi: 10.1146/annurev-marine-120709-142723

    CrossRef Google Scholar

    [4] CHEN T A C,HUANG T H,CHEN Y T,et al. Air-sea exchanges of coin the world's coastal seas[J]. Biogeosciences,2013,10:6509-6544. doi: 10.5194/bg-10-6509-2013

    CrossRef Google Scholar

    [5] JIAO N Z,TANG K,CAI H Y,et al. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land.[J]. Nature Reviews Microbiology,2010,9(1):75.

    Google Scholar

    [6] HEDGES J I, KEIL R G. Sedimentary organic matter preservation:an assessment and speculative synthesis[J]. Marine Chemistry,1995,49(2/3):123-126.

    Google Scholar

    [7] 戴民汉,翟惟东,鲁中明,等. 中国区域碳循环研究进展与展望[J]. 地球科学进展,2004,19(1):120-130. doi: 10.3321/j.issn:1001-8166.2004.01.017

    CrossRef Google Scholar

    [8] 赵美训,丁杨,于蒙. 中国边缘海沉积有机质来源及其碳汇意义[J]. 中国海洋大学学报(自然科学版),2017,47(9):70-76.

    Google Scholar

    [9] 白亚之,乔淑卿,吴斌,等. 泰国湾百年来有机碳埋藏记录及环境响应[J]. 沉积学报,2022,40(2):484-493.

    Google Scholar

    [10] 邢庆会,于彩芬,廖国祥,等. 浅析我国海岸带蓝碳应对气候变化的发展研究[J]. 海洋环境科学,2022,41(1):1-7. doi: 10.12111/j.mes.20200251

    CrossRef Google Scholar

    [11] 焦念志,梁彦韬,张永雨,等. 中国海及邻近区域碳库与通量综合分析[J]. 中国科学:地球科学,2018,48(11):1393-1421.

    Google Scholar

    [12] 侯雪景,印萍,丁旋,等. 青岛胶州湾大沽河口滨海湿地的碳埋藏能力[J]. 海洋地质前沿,2012,28(11):17-26.

    Google Scholar

    [13] 胡利民. 大河控制性影响下的陆架海沉积有机质的"源—汇"作用[D]. 青岛: 中国海洋大学, 2010.

    Google Scholar

    [14] 张明宇,常鑫,胡利民,等. 东海内陆架有机碳的源—汇过程及其沉积记录[J]. 沉积学报,2021,39(3):593-609.

    Google Scholar

    [15] HU L M,SHI X F,BAI Y Z,et al. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea,China[J]. Journal of Marine Systems,2016,155:50-58. doi: 10.1016/j.jmarsys.2015.10.018

    CrossRef Google Scholar

    [16] DENG B,ZHANG J,WU Y. Recent sediment accumulation and carbon burial in the East China Sea[J]. Global Biogeochemical Cycles,2006,20(3):1-12.

    Google Scholar

    [17] 石学法,胡利民,乔淑卿,等. 中国东部陆架海沉积有机碳研究进展:来源、输运与埋藏[J]. 海洋科学进展,2016,34(3):313-327.

    Google Scholar

    [18] 许建平,杨士英. 三门湾海洋生态环境概述[J]. 能源工程,1992(2):28-30. doi: 10.16189/j.cnki.nygc.1992.02.011

    CrossRef Google Scholar

    [19] 刘晓凤,段晓勇,田元,等. 三门湾水体营养盐变化及其对人类活动的响应[J]. 海洋地质前沿,2021,37(5):46-56. doi: 10.16028/j.1009-2722.2020.052

    CrossRef Google Scholar

    [20] 夏小明. 三门湾潮汐汊道系统的稳定性[D]. 杭州: 浙江大学, 2011.

    Google Scholar

    [21] 胡方西,曹沛奎. 三门湾潮波运动特征及其与地貌发育的关系[J]. 海洋与湖沼,1981(3):225-234.

    Google Scholar

    [22] 杨士瑛. 三门湾自然环境特征与资源可持续利用[M]. 青岛: 中国海洋大学出版社, 2018.

    Google Scholar

    [23] 穆锦斌. 三门核电3、4号机组海域使用论证岸滩稳定性分析和数值计算专题之一: 岸滩稳定性分析报告[R]. 杭州: 浙江省水利河口研究院, 2014.

    Google Scholar

    [24] 谢钦春,马黎明,李伯根,等. 浙江三门湾猫头深潭风暴快速沉积研究[J]. 海洋学报,2001,23(5):78-86.

    Google Scholar

    [25] 杨辉,谢钦春,李伯根,等. 三门湾猫头深潭及附近海域底床冲淤演变及其动力机制[J]. 东海海洋,2003,21(2):13-22.

    Google Scholar

    [26] 应超,王乐乐,黄世昌. 三门湾猫头深潭对“烟花”台风的冲淤响应[J]. 水利水运工程学报,2021(6):43-50. doi: 10.12170/20210929003

    CrossRef Google Scholar

    [27] 姚炎明. 三门湾海洋环境容量及污染物总量控制研究[M]. 北京: 海洋出版社, 2015.

    Google Scholar

    [28] 鲁青原. 辽河滨海芦苇湿地有机碳的埋藏过程及控制因素[D]. 杭州: 浙江大学, 2020.

    Google Scholar

    [29] 薛成凤,盛辉,魏东运,等. 沉积物干容重分析及其沉积学意义:以东海内陆架海区为例[J]. 海洋与湖沼,2020,51(5):1093-1107. doi: 10.11693/hyhz20191000200

    CrossRef Google Scholar

    [30] 章伟艳,金海燕,张富元,等. 长江口—杭州湾及其邻近海域不同粒级沉积有机碳分布特征[J]. 地球科学进展,2009,24(11):1202-1209. doi: 10.3321/j.issn:1001-8166.2009.11.004

    CrossRef Google Scholar

    [31] 赵军. 长江口与密西西比河口沉积有机碳生物地球化学比较研究[D]. 青岛: 中国海洋大学, 2011.

    Google Scholar

    [32] 陈培雄,张鹤,周鑫,等. 三门湾近期围填海工程对海洋环境综合影响分析[J]. 绿色科技,2018(4):104-109. doi: 10.16663/j.cnki.lskj.2018.04.033

    CrossRef Google Scholar

    [33] KASTOWSKI M,HINDERER M,VECSEI A. Long-term carbon burial in European lakes:analysis and estimate[J]. Global Biogeochemical Cycles,2011,25(3):1-12.

    Google Scholar

    [34] XU H,LAN J,LIU B,et al. Modern carbon burial in Lake Qinghai,China[J]. Applied Geochemistry,2013,39:150-155. doi: 10.1016/j.apgeochem.2013.04.004

    CrossRef Google Scholar

    [35] 宋以龙,陈敬安,杨海全,等. 云南抚仙湖沉积物有机质来源与时空变化特征[J]. 矿物岩石地球化学通报,2016,35(4):618-624,607. doi: 10.3969/j.issn.1007-2802.2016.04.002

    CrossRef Google Scholar

    [36] 张风菊,薛滨,姚书春. 中全新世以来呼伦湖沉积物碳埋藏及其影响因素分析[J]. 湖泊科学,2018,30(1):234-244. doi: 10.18307/2018.0123

    CrossRef Google Scholar

    [37] 陆健健. 中国滨海湿地的分类[J]. 环境导报,1996(1):1-2.

    Google Scholar

    [38] 刘庆武,胡志艳. 如何用SPSS、SAS统计软件进行正态性检验[J]. 湘南学院学报,2005,7(3):56-58.

    Google Scholar

    [39] 杨斌. 正态性检验的几种方法比较[J]. 统计与决策,2015(14):72-74. doi: 10.13546/j.cnki.tjyjc.2015.14.019

    CrossRef Google Scholar

    [40] TOBLER W R. A computer movie simulating urban growth in the Detroit Region[J]. Economic Geography,1970,46(2):234-240.

    Google Scholar

    [41] 李新,程国栋,卢玲. 空间内插方法比较[J]. 地球科学进展,2000,15(3):260-265.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(287) PDF downloads(25) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint