2023 Vol. 39, No. 6
Article Contents

TIAN Yuan, CAO Ke, YIN Ping, GAO Fei, DUAN Xiaoyong, LV Shenghua, CHEN Xiaoying. Distribution, sources and environmental risk assessment on potential toxic elements in soils along coast of Sanmen Bay[J]. Marine Geology Frontiers, 2023, 39(6): 32-45. doi: 10.16028/j.1009-2722.2022.132
Citation: TIAN Yuan, CAO Ke, YIN Ping, GAO Fei, DUAN Xiaoyong, LV Shenghua, CHEN Xiaoying. Distribution, sources and environmental risk assessment on potential toxic elements in soils along coast of Sanmen Bay[J]. Marine Geology Frontiers, 2023, 39(6): 32-45. doi: 10.16028/j.1009-2722.2022.132

Distribution, sources and environmental risk assessment on potential toxic elements in soils along coast of Sanmen Bay

More Information
  • The accumulation of potential toxic elements (PTEs) in soil through the food chain poses a serious threat to human health. Therefore, it is important to investigate the concentration of PTEs in soil for ecological and environmental safety. To identify the content, distribution, and main sources of PTEs in soils along coast of Sanmen Bay, Zhejiang, soil samples were collected in 36 sites in four sub-basins along Sanmen Bay. The analyses of clay minerals, pH, 10 PTEs, Si, Al, Fe, and TOC in the soils were performed. Source analysis of PTEs was performed using correlation and principal component analysis. Assessment on environmental risk of PTEs based on the Soil Environmental Quality (China National Standard GB 15618—2018), Enrichment Factor (EF), Nemerow Pollution Index (PI), and Potential Ecological Risk Pollution Index (RI) was conducted. Results show that the clay mineral composition of soils in different geomorphic units varied significantly. In comparison, the proportions of kaolinite and chlorite in the intermontane plain soils were relatively high (>30% on average), and that of illite in the marine plain was relatively high (>60%). The intermontane plain soils are mainly from local weathered parent rocks, while the marine accumulation plain soils are mainly modified by sediment from the Changjiang (Yangtze) River during the historical period. The concentration of soil PTEs shows an increasing trend from upstream to downstream in all sub-basins. The order in average enrichment of PTEs from high to low was Hg, Cd, Sb, As, Pb, Ni, Cr, Co, Zn, and Cu. In addition, 27.8%, 2.8%, and 2.8% of the sites were in minor enrichment, moderate enrichment, and moderately-severe enrichment in Hg, respectively; 13.9%, 8.3%, 8.3%, and 16.7% of the sites were in minor enrichment in Cd, Sb, As, and Pb, respectively. PI values showed that 86.1%, 2.8%, and 2.8% of the sites were moderately polluted, heavily polluted, and severely polluted, respectively. RI values showed that 16.7% of the sites ranked in ecological grade of moderate risk, whose Hg and Cd were amounted to 44.8% and 25.9%, respectively. The correlation and principal component analysis suggested that Cu, Zn, Cr, Ni, Co, As, and Sb were mainly in natural origination from soil-forming parent rocks, soil mechanical composition, soil pH, etc. On the other hand, Pb, Cd, and Hg were mainly anthropogenic from activities of industry, agriculture, and transportation.

  • 加载中
  • [1] HU B Q,LI J,ZHAO J T,et al. Heavy metal in surface sediments of the Liaodong Bay,Bohai Sea:distribution,contamination,and sources[J]. Environ Monit Assess,2013,185(6):5071-5083. doi: 10.1007/s10661-012-2926-0

    CrossRef Google Scholar

    [2] CHEN T,LIU X M,ZHU M Z,et al. Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou,China[J]. Environ Pollut,2008,151(1):67-78. doi: 10.1016/j.envpol.2007.03.004

    CrossRef Google Scholar

    [3] FAN Y,CHEN X,CHEN Z,et al. Pollution characteristics and source analysis of heavy metals in surface sediments of Luoyuan Bay,Fujian[J]. Environmental Research,2021,203:111911.

    Google Scholar

    [4] 戴彬,吕建树,战金成,等. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价[J]. 环境科学,2015,36(2):507-515. doi: 10.13227/j.hjkx.2015.02.018

    CrossRef Google Scholar

    [5] ZHANG M,SUN X,XU J. Heavy metal pollution in the East China Sea:a review[J]. Marine Pollution Bulletin,2020,159:111473. doi: 10.1016/j.marpolbul.2020.111473

    CrossRef Google Scholar

    [6] 汪庆华,董岩翔,周国华,等. 浙江省土壤地球化学基准值与环境背景值[J]. 生态与农村环境学报,2007,23(2):81-88. doi: 10.3969/j.issn.1673-4831.2007.02.017

    CrossRef Google Scholar

    [7] ZHANG S,YANG D,LI F L,et al. Determination of regional soil geochemical baselines for trace metals with principal component regression:a case study in the Jianghan Plain,China[J]. Applied geochemistry,2014,48:193-206. doi: 10.1016/j.apgeochem.2014.07.019

    CrossRef Google Scholar

    [8] BOETTINGER J L. Alluvium and alluvial soils[J]. Encyclopedia of Soils in the Environment,2005,1:45-49.

    Google Scholar

    [9] 毛盼,王明娅,孙昂,等. 某典型废弃硫酸场地土壤重金属污染特征与评价[J]. 环境化学,2021,41(2):1-15.

    Google Scholar

    [10] 生态环境部. 2020年中国生态环境状况公报(摘录)[J]. 环境保护,2021,49(11):47-68. doi: 10.14026/j.cnki.0253-9705.2021.11.010

    CrossRef Google Scholar

    [11] 宋伟,陈百明,刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究,2013,20(2):293-198.

    Google Scholar

    [12] 关天霞,何红波,张旭东,等. 土壤中重金属元素形态分析方法及形态分布的影响因素[J]. 土壤通报,2011,42(2):503-512. doi: 10.19336/j.cnki.trtb.2011.02.049

    CrossRef Google Scholar

    [13] 朱荣,杨承虎,严峻,等. 浙江三门湾海域沉积物中重金属调查与评价[J]. 山东化工,2020,49(19):246-248. doi: 10.3969/j.issn.1008-021X.2020.19.110

    CrossRef Google Scholar

    [14] 曹柳燕,张捷,胡颢琰,等. 浙江南部近岸海域表层沉积物中重金属污染评价[J]. 环境污染与防治,2016,38(7):61-65. doi: 10.15985/j.cnki.1001-3865.2016.07.011

    CrossRef Google Scholar

    [15] 浙江省生态环境厅. 2020年浙江省生态环境状况公报[EB/OL]. (2021-06-03) [2021-10-18]. http://sthjt.zj.gov.cn/art/2021/6/3/art_1201912_58928030.html.

    Google Scholar

    [16] 赵晨辉,胡佶,刘小涯,等. 浙江三门湾表层沉积物重金属含量分布、赋存形态及生态风险评价[J]. 海洋学研究,2018,36(2):64-73. doi: 10.3969/j.issn.1001-909X.2018.02.009

    CrossRef Google Scholar

    [17] 付雅晴,印萍,高飞,等. 浙江省三门湾北部潮滩互花米草遥感研究[J]. 中国海洋大学学报(自然科学版),2022,52(1):134-144.

    Google Scholar

    [18] 刘晓凤,段晓勇,田元,等. 三门湾水体营养盐变化及其对人类活动的响应[J]. 海洋地质前沿,2021,37(5):46-56. doi: 10.16028/j.1009-2722.2020.052

    CrossRef Google Scholar

    [19] 李铁军,郭远明,贾怡然,等. 三门湾海域环境质量现状评价与分析[J]. 海洋湖沼通报,2011,130(3):123-128. doi: 10.3969/j.issn.1003-6482.2011.03.019

    CrossRef Google Scholar

    [20] 施晓来. 近15 a来三门湾海域氮,磷营养盐分布与富营养化状况的变化分析[J]. 海洋学研究,2013,31(4):63-67. doi: 10.3969/j.issn.1001-909X.2013.04.010

    CrossRef Google Scholar

    [21] 章明奎,王浩,张慧敏. 浙东海积平原农田土壤重金属来源辨识[J]. 环境科学学报,2008,28(10):1946-1954. doi: 10.3321/j.issn:0253-2468.2008.10.002

    CrossRef Google Scholar

    [22] 陶安安. 象山县土壤微量元素有效态含量与空间分布特征[J]. 浙江农业科学,2012,322(7):1036-1039. doi: 10.3969/j.issn.0528-9017.2012.07.041

    CrossRef Google Scholar

    [23] 章增强,杨杰,陈月丹. 象山县耕地土壤养分变迁与提升对策[J]. 浙江农业科学,2012,323(8):1182-1184. doi: 10.3969/j.issn.0528-9017.2012.08.039

    CrossRef Google Scholar

    [24] 岑汤校,安玲玲,麻万诸,等. 宁海县30年来耕地土壤养分的变化[J]. 浙江农业科学,2013,337(10):1346-1350. doi: 10.3969/j.issn.0528-9017.2013.10.041

    CrossRef Google Scholar

    [25] 宋文杰,禹丝思,陈梅花,等. 近30年三门湾海岸线时空变化及人为干扰度分析[J]. 浙江师范大学学报(自然科学版),2017,40(3):343-349.

    Google Scholar

    [26] 象山县统计局. 2020年象山县国民经济和社会发展统计公报[EB/OL]. (2021-03-09) [2021-10-18]. http://www.xiangshan.gov.cn/art/2021/3/5/art_1229057754_3709589.html.

    Google Scholar

    [27] 三门县统计局. 2020年三门县国民经济和社会发展统计公报[EB/OL]. [2021-10-18]. http://www.sanmen.gov.cn/art/2021/6/3/art_1229320973_3713549.html.

    Google Scholar

    [28] 宁海县统计局. 2020年宁海县国民经济和社会发展统计公报[EB/OL]. (2021-04-25) [2021-10-18]. http://www.ninghai.gov.cn/art/2021/4/25/art_1229092456_59026529.html.

    Google Scholar

    [29] 中国海湾志编纂委员会. 中国海湾志-第五分册(上海市和浙江省北部海湾) [M]. 北京: 海洋出版社, 1992.

    Google Scholar

    [30] 水旭琼,申子彬,郁懋楠. 宁海县1957—2014年降水量时空变化特征[J]. 浙江农业科学,2018,59(7):1283-1285+1288. doi: 10.16178/j.issn.0528-9017.20180763

    CrossRef Google Scholar

    [31] 郑红波,吴健平,张珊. 浙江宁海农用地土壤有机质和土壤养分空间变异分析[J]. 浙江林学院学报,2010,27(3):379-384.

    Google Scholar

    [32] XU G,LIU J,PEI S F,et al. Geochemical background and ecological risk of heavy metals in surface sediments from the west Zhoushan Fishing Ground of East China Sea[J]. Environmental Science and Pollution Research International,2015,22(24):20283-20294. doi: 10.1007/s11356-015-5662-5

    CrossRef Google Scholar

    [33] BISCAYE P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin,1965,76(7):803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    CrossRef Google Scholar

    [34] SUCHAROVà J,SUCHARA I,HOLA M,et al. Top-/bottom-soil ratios and enrichment factors:what do they really show?[J]. Applied Geochemistry,2012,27(1):138-145. doi: 10.1016/j.apgeochem.2011.09.025

    CrossRef Google Scholar

    [35] BRADY J P,AYOKO G A,MARTENS W N,et al. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments[J]. Environmental Monitoring and Assessment,2015,187(306):1-14.

    Google Scholar

    [36] DUODU G O,GOONETILLEKE A,AYOKO G A. Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment[J]. Environment Pollution,2016,219:1077-1091. doi: 10.1016/j.envpol.2016.09.008

    CrossRef Google Scholar

    [37] CHEN C W,KAO C M,CHEN C F,et al. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor,Taiwan[J]. Chemosphere,2007,66(8):1431-1440. doi: 10.1016/j.chemosphere.2006.09.030

    CrossRef Google Scholar

    [38] LIU J,YIN P,CHEN X Y,et al. Distribution,enrichment and transport of trace metals in sediments from the Dagu River Estuary in the Jiaozhou Bay,Qingdao,China[J]. Minerals,2019,9(9):1-18.

    Google Scholar

    [39] NEMEROW N L. Stream, lake, estuary, and ocean pollution [M]. United States: Web, 1991.

    Google Scholar

    [40] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research,1980,14(8):975-1001. doi: 10.1016/0043-1354(80)90143-8

    CrossRef Google Scholar

    [41] MANOJ K,PADHY P K. Distribution,enrichment and ecological risk assessment of six elements in bed sediments of a tropical river,Chottanagpur Plateau:a spatial and temporal appraisal[J]. Journal of Environmental Protection,2014,5(14):1419-1434. doi: 10.4236/jep.2014.514136

    CrossRef Google Scholar

    [42] 徐争启,倪师军,庹先国,等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术,2008,148(2):112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030

    CrossRef Google Scholar

    [43] WANG N,WANG A,KONG L,et al. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment[J]. Science of Total Environment,2018,610/611:167-174. doi: 10.1016/j.scitotenv.2017.07.268

    CrossRef Google Scholar

    [44] 周晓静. 浙江沿岸黏土矿物与长江物质示踪标记的初步研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2003.

    Google Scholar

    [45] 薛成凤,贾建军,高抒,等. 中小河流对长江水下三角洲远端泥沉积的贡献:以椒江和瓯江为例[J]. 海洋学报,2018,40(5):75-89.

    Google Scholar

    [46] 杨作升. 黄河、长江、珠江沉积物中黏土的矿物组合、化学特征及其与物源区气候环境的关系[J]. 海洋与湖沼,1988,19(4):336-346.

    Google Scholar

    [47] XU K,MILLIMAN J D,LI A C,et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research,2009,29(18):2240-2256. doi: 10.1016/j.csr.2009.08.017

    CrossRef Google Scholar

    [48] YANG S Y,JUNG H S,LIM D I,et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews,2003,63(1/2):93-120.

    Google Scholar

    [49] 范德江,杨作升,毛登,等. 长江与黄河沉积物中黏土矿物及地化成分的组成[J]. 海洋地质与第四纪地质,2001,21(4):7-12.

    Google Scholar

    [50] 汪庆华,董岩翔,郑文,等. 浙江土壤地球化学基准值与环境背景值[J]. 地质通报,2007,26(5):590-597. doi: 10.3969/j.issn.1671-2552.2007.05.012

    CrossRef Google Scholar

    [51] LI Q,LI S,XIAO Y,et al. Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012[J]. Catena,2019,175:278-285. doi: 10.1016/j.catena.2018.12.025

    CrossRef Google Scholar

    [52] 周建军,周桔,冯仁国. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊,2014,29(3):315-320,350,272.

    Google Scholar

    [53] 张志忠,李双林,董岩翔,等. 浙江近岸海域沉积物沉积速率及地球化学特征[J]. 海洋地质,2005,25(3):15-24.

    Google Scholar

    [54] LV J,LIU Y,ZHANG Z,et al. Multivariate geostatistical analyses of heavy metals in soils:spatial multi-scale variations in Wulian,Eastern China[J]. Ecotoxicology and environmental safety,2014,107:140-147. doi: 10.1016/j.ecoenv.2014.05.019

    CrossRef Google Scholar

    [55] LV J,LIU Y,ZHANG Z,et al. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach[J]. Journal of Soils and Sediments,2014,15:163-178.

    Google Scholar

    [56] 邹勇军,胡小娟,汪成钵,等. 江西省赣县沙地土壤重金属的来源及环境等级评价[J]. 中国煤炭地质,2018,30(11):66-73. doi: 10.3969/j.issn.1674-1803.2018.11.14

    CrossRef Google Scholar

    [57] 陈清霞,陆晓辉,涂成龙. 安顺市土壤pH空间变异及影响因素分析[J]. 环境科学,2021,43(4):2124-2132. doi: 10.13227/j.hjkx.202108126

    CrossRef Google Scholar

    [58] 史坚,廖欣峰,祝小祥,等. 节能灯企业集聚区周边农田土壤重金属污染评价[J]. 上海农业学报,2014,30(2):90-94. doi: 10.3969/j.issn.1000-3924.2014.02.021

    CrossRef Google Scholar

    [59] WALKER S,GRIFFIN S. Site-specific data confirm arsenic exposure predicted by the US Environmental Protection Agency[J]. Environmental Health Perspectives,1998,106(3):133-139. doi: 10.1289/ehp.98106133

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(8)

Article Metrics

Article views(541) PDF downloads(39) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint