2023 Vol. 39, No. 6
Article Contents

PENG Guangrong, SHI Chuang, LONG Zulie, WU Jing, XIONG Wanlin, ZHU Dingwei, MA Ning. Relationship between element geochemical characteristics and organic matter enrichment of Wenchang Formation mudstones in Enping Sub-sag 21, Pearl River Mouth Basin[J]. Marine Geology Frontiers, 2023, 39(6): 65-74. doi: 10.16028/j.1009-2722.2022.233
Citation: PENG Guangrong, SHI Chuang, LONG Zulie, WU Jing, XIONG Wanlin, ZHU Dingwei, MA Ning. Relationship between element geochemical characteristics and organic matter enrichment of Wenchang Formation mudstones in Enping Sub-sag 21, Pearl River Mouth Basin[J]. Marine Geology Frontiers, 2023, 39(6): 65-74. doi: 10.16028/j.1009-2722.2022.233

Relationship between element geochemical characteristics and organic matter enrichment of Wenchang Formation mudstones in Enping Sub-sag 21, Pearl River Mouth Basin

More Information
  • The elements of mudstones can well preserve the original sedimentary records. To define the element geochemical characteristics of the Wenchang Formation mudstones in Enping Subsag 21 and its relationship with enrichment of organic matter, 10 debris samples of the mudstones from well YJ-1 were collected, on which geochemical tests of organic carbon, major elements and trace elements were conducted. The geochemical characteristics of major and trace elements were examined, and paleo-environmental indicators such as paleo-climate, paleo-water depth, paleo-oxygenation facies, and paleo-productivity of the Wenchang Formation in the subsag were systematically analyzed. Compared with the content of major and trace elements in the Upper Continental Crust (UCC), major elements of the Wenchang Formation mudstones in Enping Subsag 21 are relatively enriched in Al2O3, K2O, and MnO, and poor in CaO, MgO, and Na2O. Trace elements are rich in Li, Be, Zn, Rb, CS, Ba, Pb, Th, U, and poor in Sr, V, and Cr. Paleoenvironmental indicators show that climate of Enping Subsag 21 in the Wenchang period was warm-moist to warm-humid. The paleo-lake was relatively deep and stable. Redox environment of the lake was mainly sub-reductive. Paleo-productivity of the lake was relatively high, and the vertical difference was significant. Correlation between organic carbon content of mudstones and paleo-productivity parameters is poor, but there is a good positive correlation with reducibility of the lake. Enrichment of organic matter was controlled by oxidation-reduction degree of the lake. Reduction condition of the lake was conducive to the preservation of organic matter. Enrichment of organic matter belongs to the "preservation mode". Further analysis shows that paleo-climate is the key factor for enrichment of organic matter in the Wenchang Formation. Warm and humid climate has a certain positive impact on productivity of the lake. Meanwhile, the precipitation was large, and the lake was deep, which was conducive to a reducing environment at the lake bottom, and thus conducive to the preservation of organic matter.

  • 加载中
  • [1] 宋春晖,鲁新川,邢强,等. 临夏盆地晚新生代沉积物元素特征与古气候变迁[J]. 沉积学报,2007,25(3):409-416. doi: 10.3969/j.issn.1000-0550.2007.03.012

    CrossRef Google Scholar

    [2] 程岳宏,于兴河,韩宝清,等. 东濮凹陷北部古近系沙三段地球化学特征及地质意义[J]. 中国地质,2010,37(2):357-366. doi: 10.3969/j.issn.1000-3657.2010.02.009

    CrossRef Google Scholar

    [3] 陈斌,李勇,邓涛,等. 晚三叠世龙门山前陆盆地须家河组泥页岩沉积环境及有机质富集模式[J]. 地质科学,2019,54(2):434-451. doi: 10.12017/dzkx.2019.028

    CrossRef Google Scholar

    [4] 石创,龙祖烈,朱俊章,等. 珠江口盆地白云凹陷恩平组泥岩元素地球化学特征及环境指示意义[J]. 海洋地质与第四纪地质,2020,40(5):79-86.

    Google Scholar

    [5] 石创. 珠江口盆地阳江东凹文昌组泥岩稀土元素特征及其地质意义[J]. 地质科技通报,2022,41(3):1-11.

    Google Scholar

    [6] 彭光荣,张向涛,许新明,等. 南海北部珠江口盆地阳江凹陷油气勘探重要发现与认识[J]. 中国石油勘探,2019,24(3):267-279. doi: 10.3969/j.issn.1672-7703.2019.03.001

    CrossRef Google Scholar

    [7] 田立新,张向涛,彭光荣,等. 珠江口盆地阳江凹陷石油地质特征及成藏主控因素[J]. 中国海上油气,2020,32(1):13-22.

    Google Scholar

    [8] 刘军,彭光荣,朱定伟,等. 珠江口盆地阳江凹陷东部地区断控成藏条件[J]. 大地构造与成矿学,2021,45(1):123-130. doi: 10.16539/j.ddgzyckx.2021.01.010

    CrossRef Google Scholar

    [9] 吴静,张晓钊,白海军,等. 珠江口盆地阳江凹陷中新统潮控体系及其岩性圈闭勘探意义[J]. 地球科学,2021,46(10):3673-3689.

    Google Scholar

    [10] 汪晓萌,彭光荣,吴静,等. 珠江口盆地恩平21洼文昌组沉积期原型盆地及其对优质烃源岩的控制[J]. 大地构造与成矿学,2021,45(1):158-167.

    Google Scholar

    [11] 熊万林,龙祖烈,朱俊章,等. 阳江凹陷恩平21洼不同沉积环境烃源岩发育特征及成藏贡献[J]. 油气地质与采收率,2021,28(5):50-56.

    Google Scholar

    [12] 刘欣颖,吴静,朱定伟,等. 珠江口盆地多期走滑构造与叠合型拉分盆地:以阳江东凹为例[J]. 大地构造与成矿学,2021,45(1):6-19. doi: 10.16539/j.ddgzyckx.2021.01.002

    CrossRef Google Scholar

    [13] TAYLOR S R, MCLENNAN S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell, 1985: 312.

    Google Scholar

    [14] RUDNICK R L, SHAN S. Composition of the Continental Crust[M]//Treatise on Geochemistry: The Crust. Oxford: Elsevier-Pergamon, 2004: 1-64.

    Google Scholar

    [15] WEDEPOHL K H. Enviromental influences on the chemical composition of shales and clays[J]. Physics and Chemistry of the Earth,1971,8(71):305-333.

    Google Scholar

    [16] 尹锦涛,俞雨溪,姜呈馥,等. 鄂尔多斯盆地张家滩页岩元素地球化学特征及与有机质富集的关系[J]. 煤炭学报,2017,42(6):1544-1556. doi: 10.13225/j.cnki.jccs.2016.1342

    CrossRef Google Scholar

    [17] MAKEEN Y M,MOHAMMED H H,WAN G A. The origin type and preservation of organic of the Barremian-Aptian organic-rich shales in the Muglad Basin,Southern Sudan,and their relation to paleoenvironment and paleoclimate conditions[J]. Marine and Petroleum Geology,2015,65:187-197. doi: 10.1016/j.marpetgeo.2015.03.003

    CrossRef Google Scholar

    [18] NESBITT H W,YOUNG G M. Early Proterozoic climate and plate motion inferred from major element chemistry of lutites[J]. Nature,1982,299:715-717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [19] HARNOIS L. The CIW index:a new chemical index of weathering[J]. Sedimentary Geology,1988,55(3/4):319-322.

    Google Scholar

    [20] NESBITT H W,YOUNG G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochim Cosmochim Acta,1984,48:1523-1534. doi: 10.1016/0016-7037(84)90408-3

    CrossRef Google Scholar

    [21] MCLENNAN S M. Weathering and global denudation[J]. Journal of Geology,1993,101(2):295-303. doi: 10.1086/648222

    CrossRef Google Scholar

    [22] 冯连君,储雪蕾,张同钢,等. 莲沱砂岩—南华大冰期前气候转冷的沉积记录[J]. 岩石学报,2006,22(9):2387-2393. doi: 10.3321/j.issn:1000-0569.2006.09.015

    CrossRef Google Scholar

    [23] 郭艳琴,余芳,李洋,等. 鄂尔多斯盆地东部石盒子组盒8沉积环境的地球化学表征[J]. 地质科学,2016,51(3):872-890.

    Google Scholar

    [24] JONES B J,MANNING A C. Comparison of geochemical indices used for the interpretation palaeoredox conditions in ancient mudstone[J]. Chemical Geology,1994,111(1/4):111-129. doi: 10.1016/0009-2541(94)90085-X

    CrossRef Google Scholar

    [25] 王志勇,孟仟祥,王作栋,等. 吐哈盆地台北凹陷侏罗系煤系源岩地球化学分类及意义[J]. 沉积学报,2010,12(6):1238-1243.

    Google Scholar

    [26] 张水昌,张宝民,边立曾,等. 中国海相烃源岩发育控制因素[J]. 地学前缘,2005,12(3):39-48.

    Google Scholar

    [27] 罗情勇,钟宁宁,朱雷,等. 华北北部中元古界洪水庄组埋藏有机碳与古生产力的相关性[J]. 科学通报,2013,58(11):1036-1047.

    Google Scholar

    [28] DYMOND J,SUESS E,LYLE M. Barium in deep-sea sediment:a geochemical proxy for paleoproductivity[J]. Paleoceanography,1992,7:163-181. doi: 10.1029/92PA00181

    CrossRef Google Scholar

    [29] TIMOTHY D A,CALVERT S E. Systematics of variations in excess Al and Al /Ti in sediment from the central equatorial Pacific[J]. Paleoceangraphy,1998,13(2):127-130.

    Google Scholar

    [30] 任景玲,张经,刘素美. 以Al/Ti比值为地球化学示踪剂反演海洋古生产力的研究进展[J]. 地球科学进展,2005,20(12):1314-1320. doi: 10.3321/j.issn:1001-8166.2005.12.006

    CrossRef Google Scholar

    [31] 刘占红,李思田,辛仁臣,等. 地层记录中的古气候信息及其与烃源岩发育的相关性:以渤海黄河口凹陷古近系为例[J]. 地质通报,2007,26(7):830-840. doi: 10.3969/j.issn.1671-2552.2007.07.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1128) PDF downloads(24) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint