2022 Vol. 38, No. 11
Article Contents

LIU Lele, WAN Yizhao, LI Chengfeng, ZHANG Yongchao, LIU Changling, WU Nengyou. Advances in field testing of the effective absolute permeability of gas hydrate reservoirs[J]. Marine Geology Frontiers, 2022, 38(11): 40-55. doi: 10.16028/j.1009-2722.2022.232
Citation: LIU Lele, WAN Yizhao, LI Chengfeng, ZHANG Yongchao, LIU Changling, WU Nengyou. Advances in field testing of the effective absolute permeability of gas hydrate reservoirs[J]. Marine Geology Frontiers, 2022, 38(11): 40-55. doi: 10.16028/j.1009-2722.2022.232

Advances in field testing of the effective absolute permeability of gas hydrate reservoirs

More Information
  • Natural gas hydrates have been widely treated as a potential energy. The effective absolute permeability of gas hydrate reservoirs is a crucial parameter reflecting the productivity, and it needs to be tested in the field. Advances in field testing of the effective absolute permeability of gas hydrate reservoirs in the world were reviewed. In addition, field-testing methods including wireline formation test and nuclear magnetic resonance logging were introduced, and challenges in on-site testing were addressed. Finally, suggestions were given to develop new field testing methods for future studies.

  • 加载中
  • [1] 刘昌岭,郝锡荦,孟庆国,等. 气体水合物基础特性研究进展[J]. 海洋地质前沿,2020,36(9):1-10.

    Google Scholar

    [2] SHAIBU R,SAMBO C,GUO B et al. An assessment of methane gas production from natural gas hydrates:challenges,technology,and market outlook[J]. Advances in Geo-Energy Research,2021,5(3):318-332. doi: 10.46690/ager.2021.03.07

    CrossRef Google Scholar

    [3] GIAVARINI C, HESTER K. Gas hydrate: immense energy potential and environmental challenges[M]. London: Springer Press, 2011: 30-56.

    Google Scholar

    [4] CUI Y,LU C,WU M et al. Review of exploration and production technology of natural gas hydrate[J]. Advances in Geo-Energy Research,2018,2(1):53-62. doi: 10.26804/ager.2018.01.05

    CrossRef Google Scholar

    [5] 王力峰,付少英,梁金强,等. 全球主要国家水合物探采计划与研究进展[J]. 中国地质,2017,44(3):439-448. doi: 10.12029/gc20170303

    CrossRef Google Scholar

    [6] 张洋,李广雪,刘芳. 天然气水合物开采技术现状[J]. 海洋地质前沿,2016,32(4):63-68.

    Google Scholar

    [7] 张旭辉,鲁晓兵,李鹏. 天然气水合物开采方法的研究综述[J]. 中国科学:物理学 力学 天文学,2019,49(3):034604.

    Google Scholar

    [8] MAKOGON Y F,HOLDITCH S A,MAKOGON T Y. Russian field illustrates gas-hydrate production[J]. Oil and Gas Journal,2005,103:43-47.

    Google Scholar

    [9] NUMASAWA M, YAMAMOTO K, YASUDA M et al. Objectives and operation overview of the 2007 JOGMEC/NRCAN/AURORA Mallik 2L-38 gas hydrate production test[C]. Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, 2008.

    Google Scholar

    [10] BOSWELL R,SCHODERBEK D,COLLETT T S et al. The Iġnik Sikumi Field Experiment,Alaska North Slope:design,operations,and implications for CO2–CH4 exchange in gas hydrate reservoirs[J]. Energy and Fuels,2017,31(1):140-153.

    Google Scholar

    [11] 王平康,祝有海,卢振权,等. 青海祁连山冻土区天然气水合物研究进展综述[J]. 中国科学:物理学 力学 天文学,2019,49(3):034606.

    Google Scholar

    [12] YAMAMOTO K, TERAO Y, FUJII T et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C]//Proceedings of the Offshore Technology Conference, Houston, 2014.

    Google Scholar

    [13] YAMAMOTO K,WANG X X,TAMAKI M et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC Advances,2019,9(45):25987-26013. doi: 10.1039/C9RA00755E

    CrossRef Google Scholar

    [14] LI J F,YE J L,QIN X W et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology,2018,1(1):5-16. doi: 10.31035/cg2018003

    CrossRef Google Scholar

    [15] YE J L,QIN X W,XIE W W et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology,2020,3(2):197-209. doi: 10.31035/cg2020043

    CrossRef Google Scholar

    [16] 李守定,李晓,王思静,等. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报,2020,28(2):282-293.

    Google Scholar

    [17] 窦斌,秦明举,蒋国盛,等. 利用地热开采南海天然气水合物的技术研究[J]. 海洋地质前沿,2011,27(10):49-52,58.

    Google Scholar

    [18] 孙致学,朱旭晨,刘垒,等. 联合深层地热甲烷水合物开采方法及可行性评价[J]. 海洋地质与第四纪地质,2019,39(2):146-156.

    Google Scholar

    [19] 吴能友,李彦龙,万义钊,等. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业,2020,40(8):100-115. doi: 10.3787/j.issn.1000-0976.2020.08.008

    CrossRef Google Scholar

    [20] 吴能友,黄丽,胡高伟,等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质,2017,37(5):1-11.

    Google Scholar

    [21] 王自豪,万义钊,刘乐乐,等. 含水合物沉积物相对渗透率研究进展[J]. 海洋地质前沿,2022,38(2):14-29. doi: 10.16028/j.1009-2722.2020.124

    CrossRef Google Scholar

    [22] LIU L L,LU X B,ZHANG X H. A theoretical model for predicting the spatial distribution of gas hydrate dissociation under the combination of depressurization and heating without the discontinuous interface assumption[J]. Journal of Petroleum Science and Engineering,2015,133:589-601. doi: 10.1016/j.petrol.2015.07.005

    CrossRef Google Scholar

    [23] HUANG L,SU Z,WU N Y et al. Analysis on geologic conditions affecting the performance of gas production from hydrate deposits[J]. Marine and Petroleum Geology,2016,77:19-29. doi: 10.1016/j.marpetgeo.2016.05.034

    CrossRef Google Scholar

    [24] SUN J X,NING F L,LEI H W et al. Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area:a case study[J]. Journal of Petroleum Science and Engineering,2018,170:345-367. doi: 10.1016/j.petrol.2018.06.032

    CrossRef Google Scholar

    [25] LIU L L,LU X B,ZHANG X H et al. Numerical simulations for analyzing deformation characteristics of hydrate-bearing sediments during depressurization[J]. Advances in Geo-Energy Research,2017,1(3):135-147. doi: 10.26804/ager.2017.03.01

    CrossRef Google Scholar

    [26] 蔡建超,夏宇轩,徐赛,等. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报,2020,52(1):208-223. doi: 10.6052/0459-1879-19-362

    CrossRef Google Scholar

    [27] 刘乐乐,刘昌岭,吴能友,等. 天然气水合物储层岩心保压转移与测试进展[J]. 地质通报,2021,40(2-3):408-422.

    Google Scholar

    [28] REN X W,GUO Z Y,NING F L et al. Permeability of hydrate-bearing sediments[J]. Earth-Science Reviews,2020,202:103100. doi: 10.1016/j.earscirev.2020.103100

    CrossRef Google Scholar

    [29] 管家明,李栋梁,梁德青,等. 天然气水合物储层渗透率研究进展[J]. 新能源进展,2021,9(1):25-34.

    Google Scholar

    [30] WINTERS W,WALKER M,HUNTER R et al. Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well,Alaska North Slope[J]. Marine and Petroleum Geology,2011,28:361-380. doi: 10.1016/j.marpetgeo.2010.01.008

    CrossRef Google Scholar

    [31] COLLETT T, JOHNSON A, KNAPP C et al. Natural gas hydrates—energy resource potential and associated geologic hazards[M]. American Association of Petroleum Geologists, 2009.

    Google Scholar

    [32] KENYON B,KLEINBERG R,STRALEY C et al. Nuclear magnetic resonance imaging technology for the 21st century[J]. Oilfield review,1995,7:19-33.

    Google Scholar

    [33] STAMBAUGH B J. NMR tools afford new logging choices[J]. Oil Gas Journal,2000,98:45-52.

    Google Scholar

    [34] ANDERSON B,HANCOCK S,WILSON S et al. Formation pressure testing at the Mount Elbert Gas Hydrate Stratigraphic Test Well,Alaska North Slope:operational summary,history matching,and interpretations[J]. Marine and Petroleum Geology,2011,28:478-492. doi: 10.1016/j.marpetgeo.2010.02.012

    CrossRef Google Scholar

    [35] RUPPEL C,BOSWELL R,JONES E. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling:introduction and overview[J]. Marine and Petroleum Geology,2008,25:819-829. doi: 10.1016/j.marpetgeo.2008.02.007

    CrossRef Google Scholar

    [36] COLLETT T S,LEE M W,ZYRIANOVA M V et al. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis[J]. Marine and Petroleum Geology,2012,34:41-61. doi: 10.1016/j.marpetgeo.2011.08.003

    CrossRef Google Scholar

    [37] BOSWELL R,COLLETT T S,FRYE M et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology,2012,34:4-30. doi: 10.1016/j.marpetgeo.2011.10.003

    CrossRef Google Scholar

    [38] FLEMINGS P B,PHILLIPS S C,BOSWELL R et al. Pressure coring a Gulf of Mexico deep-water turbidite gas hydrate reservoir:initial results from The University of Texas–Gulf of Mexico 2-1 (UT-GOM2-1) Hydrate Pressure Coring Expedition[J]. AAPG Bulletin,2020,104:1847-1876. doi: 10.1306/05212019052

    CrossRef Google Scholar

    [39] FANG Y,FLEMINGS P B,DAIGLE H et al. Petrophysical properties of the Green Canyon Block 955 hydrate reservoir inferred from reconstituted sediments:implications for hydrate formation and production[J]. AAPG Bulletin,2020,104:1997-2028. doi: 10.1306/01062019165

    CrossRef Google Scholar

    [40] DAIGLE H,DUGAN B. Extending NMR data for permeability estimation in fine-grained sediments[J]. Marine and Petroleum Geology,2009,26:1419-1427. doi: 10.1016/j.marpetgeo.2009.02.008

    CrossRef Google Scholar

    [41] DUGAN B. Fluid flow in the Keathley Canyon 151 Mini-Basin,northern Gulf of Mexico[J]. Marine and Petroleum Geology,2008,25:919-923. doi: 10.1016/j.marpetgeo.2007.12.005

    CrossRef Google Scholar

    [42] FUJII T,SUZUKI K,TAKAYAMA T et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough,Japan[J]. Marine and Petroleum Geology,2015,66:310-322. doi: 10.1016/j.marpetgeo.2015.02.037

    CrossRef Google Scholar

    [43] YAMAMOTO K. Overview and introduction: Pressure core-sampling and analyses in the 2012–2013 MH21 offshore test of gas production from methane hydrates in the eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 296-309.

    Google Scholar

    [44] KONNO Y,YONEDA J,EGAWA K et al. Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough[J]. Marine and Petroleum Geology,2015,66:487-495. doi: 10.1016/j.marpetgeo.2015.02.020

    CrossRef Google Scholar

    [45] DAI S, BOSWELL R, WAITE W F et al. What has been learned from pressure cores [C]. Proceedings of the 9th International Conference on Gas Hydrate, Denver, 2017.

    Google Scholar

    [46] UCHIDA T,TSUJI T. Petrophysical properties of natural gas hydrates-bearing sands and their sedimentology in the Nankai Trough[J]. Resource Geology,2004,54:79-87. doi: 10.1111/j.1751-3928.2004.tb00189.x

    CrossRef Google Scholar

    [47] COLLETT T S,BOSWELL R,Cochran J R et al. Geologic implications of gas hydrates in the offshore of India:Results of the National Gas Hydrate Program Expedition 01[J]. Marine and Petroleum Geology,2014,58:3-28. doi: 10.1016/j.marpetgeo.2014.07.021

    CrossRef Google Scholar

    [48] COLLETT T S,BOSWELL R,WAITE W F et al. India National Gas Hydrate Program Expedition 02 Summary of Scientific Results:gas hydrate systems along the eastern continental margin of India[J]. Marine and Petroleum Geology,2019,108:39-142. doi: 10.1016/j.marpetgeo.2019.05.023

    CrossRef Google Scholar

    [49] KUMAR P,COLLETT T S,YADAV U S et al. Formation pressure and fluid flow measurements in marine gas hydrate reservoirs,NGHP-02 expedition,offshore India[J]. Marine and Petroleum Geology,2019,108:609-618. doi: 10.1016/j.marpetgeo.2018.11.035

    CrossRef Google Scholar

    [50] KANG D,LU J A,ZHANG Z et al. Fine-grained gas hydrate reservoir properties estimated from well logs and lab measurements at the Shenhu gas hydrate production test site,the northern slope of the South China sea[J]. Marine and Petroleum Geology,2020,122:104676. doi: 10.1016/j.marpetgeo.2020.104676

    CrossRef Google Scholar

    [51] 刘能强. 实用现代试井解释方法[M]. 北京: 石油工业出版社, 2008.

    Google Scholar

    [52] 韩永新, 孙贺东, 邓兴梁, 等. 实用试井解释方法[M]. 北京: 石油工业出版社, 2016.

    Google Scholar

    [53] 冯永仁,左有祥,王健,等. 地层测试技术及其应用的进展与挑战[J]. 测井技术,2019,43(3):217-227.

    Google Scholar

    [54] 高永德,孙殿强,杨冬,等. 基于电缆地层测试资料储层有效渗透率计算方法研究[J]. 地质科技情报,2019,38(2):137-142.

    Google Scholar

    [55] CANTINI S, BAKDINI D, BERETTA E et al. Reservoir permeability from wireline formation testers[C]. SPE 164924 paper presented at the EAGE Annual Conference & Exhibition incorporating SPE Europec, United Kingdom, 10-13 June 2013.

    Google Scholar

    [56] DUSSAN E B and SHARMA Y. Analysis of the pressure response of a single-probe formation tester[J]. SPE Formation Evaluation,1992,7(2):151-156. doi: 10.2118/16801-PA

    CrossRef Google Scholar

    [57] STEWART G and WITTMANN M. Interpretation of the pressure response of the repeat formation tester[C]. SPE 8362 paper presented at the SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada, United States, September 1979.

    Google Scholar

    [58] MORAN J H and FINKLEA E E. Theoretical analysis of pressure phenomena associated with the wireline formation tester[J]. Journal of Petroleum Technology,1962,14(8):899-908. doi: 10.2118/177-PA

    CrossRef Google Scholar

    [59] KASAP E,Huang K,SHWE T et al. Formation-rate-analysis technique:combined drawdown and buildup analysis for wireline formation test data[J]. SPE Reservoir Evaluation & Engineering,1999,2(3):271-280.

    Google Scholar

    [60] MANIVANNAN S. Measuring permeability vs depth in the unlined section of a wellbore using the descent of a fluid column made of two distinct fluids: inversion workflow, laboratory & in-situ tests[D]. NNT: 2018SACLX086, Université Paris Saclay, 2018.

    Google Scholar

    [61] KLEINBERG R L, KENYON W E, MITRA P P. Mechanism of NMR relaxation of fluids in rock[J]. Journal of Magnetic Resonance, 1994(Series A), 108: 206-214.

    Google Scholar

    [62] KORB J-P. Nuclear magnetic relaxation of liquids in porous media[J]. New Journal of Physics,2011,13:035016. doi: 10.1088/1367-2630/13/3/035016

    CrossRef Google Scholar

    [63] KLEINBERG R L,FLAUM C,GRIFFIN D D et al. Deep sea NMR:Methane hydrate growth habit in porous media and its relationship to hydraulic permeability,deposit accumulation,and submarine slope stability[J]. Journal of Geophysical Research:Solid Earth,2003,108:2508.

    Google Scholar

    [64] KLEINBERG R L,FLAUM C,STRALEY C et al. Seafloor nuclear magnetic resonance assay of methane hydrate in sediment and rock[J]. Journal of Geophysical Research:Solid Earth,2003,108:2137.

    Google Scholar

    [65] SAUMYA S,NARASIMHAN B,SINGH J et al. Acquisition of Logging-While-Drilling (LWD) multipole acoustic log data during the India National Gas Hydrate Program (NGHP) Expedition 02[J]. Marine and Petroleum Geology,2019,108:562-569. doi: 10.1016/j.marpetgeo.2018.10.011

    CrossRef Google Scholar

    [66] LIU L,ZHANG Z,LIU C et al. Nuclear magnetic resonance transverse surface relaxivity in quartzitic sands containing gas hydrate[J]. Energy & Fuels,2021,35:6144-6152.

    Google Scholar

    [67] MOHNKE O,HUGHES B. Jointly deriving NMR surface relaxivity and pore size distributions by NMR relaxation experiments on partially desaturated rocks[J]. Water Resource Research,2014,50:5309-5321. doi: 10.1002/2014WR015282

    CrossRef Google Scholar

    [68] KENYON W E. Nuclear magnetic resonance as a petrophysical measurement[J]. Nuclear Geophysics,1992,6:153-171.

    Google Scholar

    [69] COATES G R,GALFORD J,MARDON D et al. A new characterization of bulk-volume irreducible using magnetic resonance[J]. The Log Analyst,1998:39.

    Google Scholar

    [70] WEI D F,LIU X P,HU X X. Applicability of classical permeability estimation models based on nmr logging in tight sandstones[J]. Advanced Materials Research,2013,772:814-818. doi: 10.4028/www.scientific.net/AMR.772.814

    CrossRef Google Scholar

    [71] XIAO L,LIU X P,ZOU C C et al. Comparative study of models for predicting permeability from nuclear magnetic resonance (NMR) logs in two Chinese tight sandstone reservoirs[J]. Acta Geophysica,2014,62(1):116-141. doi: 10.2478/s11600-013-0165-6

    CrossRef Google Scholar

    [72] HOU J, ZHAO E M, LIU Y G, et al. Pressure-transient behavior in class Ⅲ hydrate reservoirs[J]. Energy, 2019, 170: 391–402.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views(2111) PDF downloads(181) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint