2022 Vol. 38, No. 11
Article Contents

LIU Xiaolei, ZHANG Shuyu, ZHENG Jiewen, JIA Yonggang. Research progress and countermeasures on geological hazards induced by extreme storms in the Yellow River Delta[J]. Marine Geology Frontiers, 2022, 38(11): 28-39. doi: 10.16028/j.1009-2722.2022.228
Citation: LIU Xiaolei, ZHANG Shuyu, ZHENG Jiewen, JIA Yonggang. Research progress and countermeasures on geological hazards induced by extreme storms in the Yellow River Delta[J]. Marine Geology Frontiers, 2022, 38(11): 28-39. doi: 10.16028/j.1009-2722.2022.228

Research progress and countermeasures on geological hazards induced by extreme storms in the Yellow River Delta

  • Under the influence of global climate change, the frequency and harmfulness level of extreme storm events in estuarine deltaic and coastal areas are increasing. In storm events, seabed sediments produce dynamic responses including pressure consolidation, liquefaction, and fluidization under wave stress, resulting in a series of impact on engineering geological properties, such as particle size composition, mechanical strength, and hierarchical structure. These dynamic responses induce marine geological disasters such as erosion and landslide, which seriously affect the stability of marine engineering construction and the safety of ecological environment. The special geographical location, climatic features, and sedimentary characteristics of the Yellow River Delta make it one of the areas where marine geological disasters happen most frequently in China. Thus it is an ideal background and unique testing ground for the study of geological disaster mechanism and its prevention and control under extreme storm events. In recent years, in the field of marine engineering geology, many studies have been carried out on the interaction between storm hydrodynamic force and seabed sediment, and on the mechanism of disaster. In particular, important innovative achievements have been made in characterization and mechanism of disaster development, quantitative evaluation on seabed liquefaction, erosion, deformation and sliding induced by extreme storms. It provides theoretical guidance for marine engineering geological evaluation and disaster prevention and/or mitigation under the global climate background. In the future, we should further strengthen the interdisciplinary and industry-university-institute cooperation, strive for breakthroughs in the chain-generation mechanism of marine geological disaster, comprehensive disaster monitoring and early warning technology, and marine engineering disaster prevention and control technology, and improve persistently China's ability of marine geological disaster response.

  • 加载中
  • [1] 刘红军,李洪江. 黄河三角洲海上风机新型吸力锚基础型式分析[J]. 中国海洋大学学报(自然科学版),2014,44(7):71-76.

    Google Scholar

    [2] 刘昀, 刘敏. 风暴潮对黄河三角洲生态湿地的危害及应对措施[C]// 2020(第八届)中国水生态大会论文集, 2020: 552-556.

    Google Scholar

    [3] 李东旭. 基于层次分析法的我国大河三角洲脆弱性评价模型研究[D]. 青岛: 中国石油大学(华东), 2012.

    Google Scholar

    [4] 孙永福, 宋玉鹏, 胡光海. 埕岛油田灾害地质研究成果报告[R]. 青岛: 自然资源部第一海洋研究所, 2006.

    Google Scholar

    [5] 杜逢超. 胜利油田作业三号修井平台倾覆地质原因分析[D]. 青岛: 中国海洋大学, 2013.

    Google Scholar

    [6] WANG H,LIU H J. Evaluation of storm wave-induced silty seabed instability and geo-hazards:a case study in the Yellow River delta[J]. Applied Ocean Research,2016,58:135-145. doi: 10.1016/j.apor.2016.03.013

    CrossRef Google Scholar

    [7] WRIGHT L D,WISEMAN W J,BORNHOLD B D,et al. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J]. Nature,1988,332:629-632. doi: 10.1038/332629a0

    CrossRef Google Scholar

    [8] MORTON R A. Subaerial storm deposits formed on barrier flats by wind-driven currents[J]. Sedimentary Geology,1979,24(1/2):105-122.

    Google Scholar

    [9] PRIOR D B, COLEMAN J M. Active slides and flows in underconsolidated marine sediments on the slopes of the Mississippi Delta[C]//Saxov S, Nieuwenhuis J K . Marine slides and other mass movements. NATO Conference Series. Boston, MA: Springer, 1982: https://doi.org/10.1007/978-1-4613-3362-3_3

    Google Scholar

    [10] MORTON R A,SALLENGER A H. Morphological impacts of extreme storms on sandy beaches and barriers[J]. Journal of Coastal Research,2003,19(3):560-573.

    Google Scholar

    [11] WANG H J,YANG Z S,LI Y H et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) Mouth[J]. Continental Shelf Research,2007,27(6):854-871. doi: 10.1016/j.csr.2006.12.002

    CrossRef Google Scholar

    [12] WANG H J,WANG A M,BI N S,et al. Seasonal distribution of suspended sediment in the Bohai Sea,China[J]. Continental Shelf Research,2014,90:17-32. doi: 10.1016/j.csr.2014.03.006

    CrossRef Google Scholar

    [13] XIE W M,WANG X Y,GUO L C et al. Impacts of a storm on the erosion process of a tidal wetland in the Yellow River Delta[J]. CATENA,2021,205:105461. doi: 10.1016/j.catena.2021.105461

    CrossRef Google Scholar

    [14] GAO W, LI G X, CAO L H et al. Formation mechanism of seafloor instability in the modern Yellow River Delta[C]//Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference. Busan: ISOPE, 2014: 289–29.

    Google Scholar

    [15] LIM D I,JUNG H S,CHOI J Y et al. Geochemical compositions of river and shelf sediments in the Yellow Sea:Grain-size normalization and sediment provenance[J]. Continental Shelf Research,2006,26(1):15-24. doi: 10.1016/j.csr.2005.10.001

    CrossRef Google Scholar

    [16] 杨秀娟,贾永刚,刘红军,等. 黄河三角洲沉积物超固结特征及其成因[J]. 海洋地质与第四纪地质,2009,29(5):29-34.

    Google Scholar

    [17] SYVITSKI J P M,KETTNER A J,OVEREEM I et al. Sinking deltas due to human activities[J]. Nature Geoscience,2009,2(10):681-686. doi: 10.1038/ngeo629

    CrossRef Google Scholar

    [18] 许小峰, 顾建峰, 李永平. 海洋气象灾害[M]. 北京: 气象出版社, 2016.

    Google Scholar

    [19] National Distater Risk Reduction and Management Council. SitRep No. 108, Effect of Typhoon “Yolanda” (Haiyan)[R]. Philippines: NDRRMC. 2014

    Google Scholar

    [20] 王硕. 杭州湾沿岸平原新石器遗址海侵地层及极端风暴事件的数值模拟[D]. 上海: 华东师范大学, 2021.

    Google Scholar

    [21] CHILLARIGE A R V,MORGENSTERN N R,ROBERTSON P K et al. Seabed instability due to flow liquefaction in the Fraser River delta[J]. Canadian Geotechnical Journal,1997,34(4):520-533. doi: 10.1139/T97-019

    CrossRef Google Scholar

    [22] PRIOR D B,SUHAYDA J N,LU N Z et al. Storm wave reactivation of a submarine landslide[J]. Nature (London),1989,341(6237):47-50. doi: 10.1038/341047a0

    CrossRef Google Scholar

    [23] LIU X L,LU Y,YU H et al. In-Situ observation of storm-induced wave-supported fluid mud occurrence in the subaqueous Yellow River Delta[J]. Journal of Geophysical Research:Oceans,2022,127(7):e2021JC018190.

    Google Scholar

    [24] ALBATAL A,WADMAN H,STARK N et al. Investigation of spatial and short-term temporal nearshore sandy sediment strength using a portable free fall penetrometer[J]. Coastal Engineering,2019,143:21-37. doi: 10.1016/j.coastaleng.2018.10.013

    CrossRef Google Scholar

    [25] MOLINA J M,ALFARO P,MORETTI M et al. Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene,Guadalquivir Basin,Spain)[J]. Terra nova (Oxford,England),1998,10(3):145-150. doi: 10.1046/j.1365-3121.1998.00183.x

    CrossRef Google Scholar

    [26] KREISA R D. Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of southwestern Virginia[J]. Journal of Sedimentary Research,1981,51(3):823-848.

    Google Scholar

    [27] BLUM M D,ROBERTS H H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise[J]. Nature Geoscience,2009,2(7):488-491. doi: 10.1038/ngeo553

    CrossRef Google Scholar

    [28] ERICSON J,VOROSMARTY C,DINGMAN S et al. Effective sea-level rise and deltas:causes of change and human dimension implications[J]. Global and Planetary Change,2006,50(1/2):63-82.

    Google Scholar

    [29] 丁一汇, 杜祥琬. 气候变化对我国重大工程的影响与对策研究[M]. 北京: 科学出版社, 2016.

    Google Scholar

    [30] WALSH J P,CORBETT R,MALLINSON D et al. Mississippi delta mudflow activity and 2005 Gulf hurricanes[J]. Eos Transactions American Geophysical Union,2006,87(44):477-478.

    Google Scholar

    [31] WANG D W,MITCHELL D A,TEAGUE W J et al. Extreme waves under Hurricane Ivan[J]. Science,2005,309(5736):896. doi: 10.1126/science.1112509

    CrossRef Google Scholar

    [32] BEVER A J,MCNINCH J E,HARRIS C K. Hydrodynamics and sediment-transport in the nearshore of Poverty Bay,New Zealand:observations of nearshore sediment segregation and oceanic storms[J]. Continental Shelf Research,2011,31(6):507-526. doi: 10.1016/j.csr.2010.12.007

    CrossRef Google Scholar

    [33] SHYNU R,RAO V P,SAMIKSHA S V et al. Suspended matter and fluid mud off Alleppey,southwest coast of India[J]. Estuarine,Coastal and Shelf Science,2017,185:31-43. doi: 10.1016/j.ecss.2016.11.023

    CrossRef Google Scholar

    [34] TRAYKOVSKI P,GEYER W R,IRISH J D et al. The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf[J]. Continental shelf research,2000,20(16):2113-2140. doi: 10.1016/S0278-4343(00)00071-6

    CrossRef Google Scholar

    [35] GARRISON L E. The SEASWAB experiment[J]. Marine Geotechnology,1977,2(1/4):117-122.

    Google Scholar

    [36] HERMAN P M J,MIDDELBURG J J,HEIP C H R. Benthic community structure and sediment processes on an intertidal flat:results from the ECOFLAT project[J]. Continental Shelf Research,2001,21(18):2055-2071.

    Google Scholar

    [37] RIDENTE D,SPOSATO A,CHIOCCI F. Large-scale mapping of submarine geohazard-related features:example from the Italian Project MAGIC (Marine Geohazards along the Italian Coasts)[J]. Geophysical Research Abstracts,2010,12:5045.

    Google Scholar

    [38] ZHANG H,LIU X L,JIA Y G et al. Rapid consolidation characteristics of Yellow River-derived sediment:Geotechnical characterization and its implications for the deltaic geomorphic evolution[J]. Engineering Geology,2020,270:105578. doi: 10.1016/j.enggeo.2020.105578

    CrossRef Google Scholar

    [39] LIU X L,ZHANG M S,ZHANG H et al. Physical and mechanical properties of loess discharged from the Yellow River into the Bohai Sea,China[J]. Engineering Geology,2017,227:4-11. doi: 10.1016/j.enggeo.2017.04.019

    CrossRef Google Scholar

    [40] PRIOR D B,YANG Z S,BORNHOLD B D et al. The subaqueous delta of the modern Huanghe (Yellow River)[J]. Geo-marine letters,1986,6(2):67-75. doi: 10.1007/BF02281642

    CrossRef Google Scholar

    [41] XU G H,LIU Z Q,SUN Y F et al. Experimental characterization of storm liquefaction deposits sequences[J]. Marine Geology,2016,382:191-199. doi: 10.1016/j.margeo.2016.10.015

    CrossRef Google Scholar

    [42] CHIEN L K,OH Y N,CHANG C H. Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil[J]. Canadian Geotechnical Journal,2002,39(1):254-265. doi: 10.1139/t01-083

    CrossRef Google Scholar

    [43] PRAKASH S,SANDOVAL J A. Liquefaction of low plasticity silts[J]. Soil Dynamics and Earthquake Engineering,1992,11(7):373-379. doi: 10.1016/0267-7261(92)90001-T

    CrossRef Google Scholar

    [44] GUO T Q, PRAKASH. Liquefaction of silts and silt-clay mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (8): 706–710.

    Google Scholar

    [45] 曾长女,刘汉龙,丰土根,等. 饱和粉土孔隙水压力性状试验研究[J]. 岩土力学,2005,26(12):1963-1966. doi: 10.3969/j.issn.1000-7598.2005.12.020

    CrossRef Google Scholar

    [46] 曾长女,刘汉龙,陈育民. 细粒含量对粉土动孔压发展模式影响的试验研究[J]. 岩土力学,2008,29(8):2193-2198. doi: 10.3969/j.issn.1000-7598.2008.08.032

    CrossRef Google Scholar

    [47] 常方强,贾永刚,郭秀军,等. 黄河口粉土液化过程的现场振动试验研究[J]. 岩土工程学报,2009,31(4):609-616. doi: 10.3321/j.issn:1000-4548.2009.04.019

    CrossRef Google Scholar

    [48] 常方强,贾永刚. 黄河口粉质土海床液化过程的现场试验研究[J]. 土木工程学报,2012,45(1):121-126. doi: 10.15951/j.tmgcxb.2012.01.002

    CrossRef Google Scholar

    [49] 刘晓磊,贾永刚,郑杰文. 波浪导致黄河口海床沉积物超孔压响应现场试验研究[J]. 岩土力学,2015,36(11):3055-3062. doi: 10.16285/j.rsm.2015.11.003

    CrossRef Google Scholar

    [50] LIU X L,ZHANG S Y,ZHENG J W et al. Experimental dynamic sediment behavior under storm waves with a 50 year recurrence interval in the Yellow River Delta[J]. Anthropocene Coasts,2019,2(1):229-243. doi: 10.1139/anc-2018-0018

    CrossRef Google Scholar

    [51] DU X, SUN Y F, SONG Y P et al. Wave-induced liquefaction hazard assessment and liquefaction depth distribution: a case study in the Yellow River Estuary, China[C]//IOP Conference Series: Earth and Environmental Science, 2020, 569: 12011.

    Google Scholar

    [52] 常方强,贾永刚. 波浪作用下埕岛海域粉质土海床的累积液化[J]. 华侨大学学报(自然科学版),2013,34(4):434-438. doi: 10.11830/ISSN.1000-5013.2013.04.0434

    CrossRef Google Scholar

    [53] LIU X L,JIA Y G,ZHENG J W et al. Experimental evidence of wave-induced inhomogeneity in the strength of silty seabed sediments:Yellow River Delta,China[J]. Ocean Engineering,2013,59:120-128. doi: 10.1016/j.oceaneng.2012.12.003

    CrossRef Google Scholar

    [54] LIU X L,JIA Y G,ZHENG J W et al. An experimental investigation of wave-induced sediment responses in a natural silty seabed:new insights into seabed stratification[J]. Sedimentology,2017,64(2):508-529. doi: 10.1111/sed.12312

    CrossRef Google Scholar

    [55] 贾永刚,陈天,李培英,等. 海洋地质灾害原位监测技术研究进展[J]. 中国地质灾害与防治学报,2022,33(3):1-14.

    Google Scholar

    [56] LIU T,LI S P,KOU H L et al. Excess pore pressure observation in marine sediment based on fiber bragg grating pressure sensor[J]. Marine Georesources and Geotechnology,2019,37(7/8):775-782.

    Google Scholar

    [57] LIU T,WEI G L,KOU H L et al. Pore pressure observation:pressure response of probe penetration and tides[J]. Acta Oceanologica Sinica,2019,38(7):107-113. doi: 10.1007/s13131-019-1462-4

    CrossRef Google Scholar

    [58] JIA Y G, LIU X L, ZHANG S T et al. Wave-forced sediment erosion and resuspension in Yellow River Delta[M]. New York: Springer, 2020.

    Google Scholar

    [59] 赵东波. 黄河三角洲刁口叶瓣海岸的侵蚀研究[D]. 青岛: 中国海洋大学, 2004.

    Google Scholar

    [60] ZHENG J W,JIA Y G,LIU X L et al. Sediment characteristics as a function of variable hydrodynamics in a tidal flat of the Yellow River Delta,China[J]. Journal of Offshore Mechanics and Arctic Engineering,2014,136(1):011104. doi: 10.1115/1.4025547

    CrossRef Google Scholar

    [61] TEISSON C,OCKENDEN M,LE HIR P et al. Cohesive sediment transport processes[J]. Coastal Engineering,1993,21(1):129-162.

    Google Scholar

    [62] WANG Y H. The intertidal erosion rate of cohesive sediment:a case study from Long Island Sound[J]. Estuarine,Coastal and Shelf Science,2003,56(5/6):891-896.

    Google Scholar

    [63] 单红仙,张建民,贾永刚,等. 黄河口快速沉积海床土固结过程研究[J]. 岩石力学与工程学报,2006(8):1676-1682. doi: 10.3321/j.issn:1000-6915.2006.08.024

    CrossRef Google Scholar

    [64] 单红仙,郑杰文,贾永刚,等. 黄河口粉质土沉积物侵蚀性动态变化试验研究[J]. 海洋学报(中文版),2009,31(4):112-119. doi: 10.3321/j.issn:0253-4193.2009.04.013

    CrossRef Google Scholar

    [65] 孟祥梅,贾永刚,杨忠年,等. 现代黄河三角洲潮滩沉积物抗侵蚀性原位试验[J]. 海洋地质与第四纪地质,2010,30(3):39-45.

    Google Scholar

    [66] ZHENG J W,JIA Y G,LIU X L et al. Experimental study of the variation of sediment erodibility under wave-loading conditions[J]. Ocean Engineering,2013,68:14-26. doi: 10.1016/j.oceaneng.2013.04.010

    CrossRef Google Scholar

    [67] 郑杰文. 现代黄河三角洲沉积物波浪动力响应过程对其再悬浮控制作用研究[D]. 青岛: 中国海洋大学, 2013.

    Google Scholar

    [68] WOLANSKI E,SPAGNOL S. Dynamics of the turbidity maximum in King Sound,tropical Western Australia[J]. Estuarine,Coastal and Shelf Science,2003,56(5/6):877-890.

    Google Scholar

    [69] TZANG S,OU S,HSU T. Laboratory flume studies on monochromatic wave-fine sandy bed interactions Part 2. Sediment suspensions[J]. Coastal Engineering,2009,56(3):230-243. doi: 10.1016/j.coastaleng.2008.07.005

    CrossRef Google Scholar

    [70] ZHANG S T,JIA Y G,WANG Z H et al. Wave flume experiments on the contribution of seabed fluidization to sediment resuspension[J]. Acta Oceanologica Sinica,2018,37(3):80-87. doi: 10.1007/s13131-018-1143-2

    CrossRef Google Scholar

    [71] ZHANG S T,JIA Y G,ZHANG Y Q, et al. Influence of seepage flows on the erodibility of fluidized silty sediments:parameterization and mechanisms[J]. Journal of Geophysical Research:Oceans,2018,123(5):3307-3321.

    Google Scholar

    [72] 单红仙,刘涛,陈友媛,等. 波浪载荷导致黄河口潮坪沉积物垂向运移现场观测研究[J]. 工程地质学报,2008(2):216-221. doi: 10.3969/j.issn.1004-9665.2008.02.013

    CrossRef Google Scholar

    [73] LIU X L,ZHANG H,ZHENG J W,et al. Critical role of wave–seabed interactions in the extensive erosion of Yellow River estuarine sediments[J]. Marine Geology,2020,426:106208. doi: 10.1016/j.margeo.2020.106208

    CrossRef Google Scholar

    [74] JIA Y G,ZHANG L P,ZHENG J W,et al. Effects of wave-induced seabed liquefaction on sediment re-suspension in the Yellow River Delta[J]. Ocean Engineering,2014,89:146-156. doi: 10.1016/j.oceaneng.2014.08.004

    CrossRef Google Scholar

    [75] LIU J P,MILLIMAN J D,GAO S,et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology,2004,209(1/4):45-67.

    Google Scholar

    [76] ZHANG S T,JIA Y G,ZHANG Y Q et al. In situ observations of wave pumping of sediments in the Yellow River Delta with a newly developed benthic chamber[J]. Marine Geophysical Research,2018,39(4):463-474. doi: 10.1007/s11001-018-9344-9

    CrossRef Google Scholar

    [77] 朱超祁,贾永刚,刘晓磊,等. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质,2015,35(6):153-163. doi: 10.16562/j.cnki.0256-1492.2015.06.016

    CrossRef Google Scholar

    [78] 贾永刚. 黄河口沉积物动力学与地质灾害[M]. 北京: 科学出版社, 2011.

    Google Scholar

    [79] RAHMAN M S. Instability and Movement of Oceanfloor Sediments:a review[J]. International Journal of Offshore and Polar Engineering,1994,7:589-599.

    Google Scholar

    [80] ZHANG M,HUANG Y,BAO Y J. The mechanism of shallow submarine landslides triggered by storm surge[J]. Natural Hazards,2016,81(2):1373-1383. doi: 10.1007/s11069-015-2112-0

    CrossRef Google Scholar

    [81] RAHMAN M S. Wave-induced instability of seabed:Mechanism and conditions[J]. Marine Geotechnology,1991,10(3/4):277-299.

    Google Scholar

    [82] JENG D S. Mechanism of the wave-induced seabed instability in the vicinity of a breakwater:a review[J]. Ocean engineering,2001,28(5):537-570. doi: 10.1016/S0029-8018(00)00013-5

    CrossRef Google Scholar

    [83] WANG Z H,SUN Y F,JIA Y G et al. Wave-induced seafloor instabilities in the subaqueous Yellow River Delta—initiation and process of sediment failure[J]. Landslides,2020,17(8):1849-1862. doi: 10.1007/s10346-020-01399-2

    CrossRef Google Scholar

    [84] DIMITROVA R S,YANFUL E K. Factors affecting the shear strength of mine tailings/clay mixtures with varying clay content and clay mineralogy[J]. Engineering Geology,2012,125:11-25. doi: 10.1016/j.enggeo.2011.10.013

    CrossRef Google Scholar

    [85] REN Y P,XU G H,XU X B et al. The initial wave induced failure of silty seabed:liquefaction or shear failure[J]. Ocean Engineering,2020,200:106990. doi: 10.1016/j.oceaneng.2020.106990

    CrossRef Google Scholar

    [86] 王虎,刘红军,张民生. 低应力条件下海洋粉土的不排水强度特性及其在海底浅层滑坡分析中的应用[J]. 岩石力学与工程学报,2014,33(4):849-856.

    Google Scholar

    [87] XU G H,SUN Y F,WANG X et al. Wave-induced shallow slides and their features on the subaqueous Yellow River delta[J]. Canadian Geotechnical Journal,2009,46(12):1406-1417. doi: 10.1139/T09-068

    CrossRef Google Scholar

    [88] COLEMAN J M,GARRISON L E. Geological aspects of marine slope stability,northwestern Gulf of Mexico[J]. Marine Geotechnology,1977,2(1/4):9-44.

    Google Scholar

    [89] PUIG P,OGSTON A S,MULLENBACH B L et al. Storm-induced sediment gravity flows at the head of the Eel submarine canyon,northern California margin[J]. Journal of Geophysical Research:Oceans,2004,109:C03019.

    Google Scholar

    [90] GEE M J R,GAWTHORPE R L,FRIEDMANN J S. Giant striations at the base of a submarine landslide[J]. Marine Geology,2005,214(1/3):287-294.

    Google Scholar

    [91] YU H Y,LIU X L,LU Y et al. Characteristics of the sediment gravity flow triggered by wave-induced liquefaction on a sloping silty seabed:an experimental investigation[J]. Frontiers in Earth Science,2022,10:909605. doi: 10.3389/feart.2022.909605

    CrossRef Google Scholar

    [92] ERCILLA G,CASAS D,ALONSO B et al. Offshore geological hazards:charting the course of progress and future directions[J]. Oceans,2021,2(2):393-428. doi: 10.3390/oceans2020023

    CrossRef Google Scholar

    [93] HEIDRUN K, CHIOCCI F L, Christian Berndt, et al. Marine geohazards: Safeguarding society and the blue economy from a hidden threat[R]. Belgium: European Marine Board Publishing, 2021.

    Google Scholar

    [94] 荆少东,梁晓勇,徐帅陵,等. 埕岛油田海上自升式平台反复插拔桩对地层的影响[J]. 油气田地面工程,2021,40(4):21-26. doi: 10.3969/j.issn.1006-6896.2021.04.004

    CrossRef Google Scholar

    [95] 张宗峰,丁红岩,刘锦昆. 混凝土联锁排应用于海底管线冲刷防护试验研究[J]. 海洋工程,2015,33(2):77-83. doi: 10.16483/j.issn.1005-9865.2015.02.009

    CrossRef Google Scholar

    [96] KAZEMIAN S,HUAT B,PRASAD A et al. A review of stabilization of soft soils by injection of chemical grouting[J]. Australian Journal of Basic and Applied Sciences,2010,4:5862-5868.

    Google Scholar

    [97] PAKIR F,MARTO A,MOHD YUNUS N Z et al. Effect of sodium silicate as liquid based stabilizer on shear strength of marine clay[J]. Jurnal Teknologi,2015,76:45-50.

    Google Scholar

    [98] WANG C J,GUO C C,DU X M et al. Reinforcement of silty soil with permeable polyurethane by penetration injection[J]. Construction and Building Materials,2021,310:124829. doi: 10.1016/j.conbuildmat.2021.124829

    CrossRef Google Scholar

    [99] FANG H Y,ZHAO P,ZHANG C et al. A cleaner polyurethane elastomer grouting material with high hardening strain for the fundamental rehabilitation:the comprehensive mechanical properties study[J]. Construction and Building Materials,2022,318:125951. doi: 10.1016/j.conbuildmat.2021.125951

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(3330) PDF downloads(217) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint