2023 Vol. 39, No. 2
Article Contents

YUE Yuanfu, TANG Lichao. Characteristics of sea level changes in the northern South China Sea since the Holocene and prediction of the future trends[J]. Marine Geology Frontiers, 2023, 39(2): 1-16. doi: 10.16028/j.1009-2722.2022.193
Citation: YUE Yuanfu, TANG Lichao. Characteristics of sea level changes in the northern South China Sea since the Holocene and prediction of the future trends[J]. Marine Geology Frontiers, 2023, 39(2): 1-16. doi: 10.16028/j.1009-2722.2022.193

Characteristics of sea level changes in the northern South China Sea since the Holocene and prediction of the future trends

  • The northern South China Sea is one of the key front zones for the transition from the South China Sea to land and one of the sensitive areas of global climate change. Affected by sea level changes, sea-level indicators are widely developed in this area, and offers an ideal area for the study of past sea-level changes. However, there are still some differences in the understanding of the Holocene sea-level change history in the northern South China Sea. Therefore, we first added 6 new and high-quality sea-level index points and reviewed and re-corrected the age and elevation of the published sea-level data obtained from the northern South China Sea, followed by mutual verification and reliability analysis. At the same time, the modern sea level observation data from 12 tide-gauge stations with relatively continuous monitoring records are collated, and the reliability of the reconstructed results are further verified. Finally, based on 679 sea level data compiled after correction and reliability assessment, we reconstructed the history and characteristics of sea level changes in the northern South China Sea since the Holocene, especially in the last 2 000 years. The results show that during the early Holocene, the sea level in the northern South China Sea rose rapidly from −16.16 m at (8 211±128) cal a BP to 1.5~2.5 m during 6 000~7 000 cal a BP, and maintained a high sea-level oscillation of 2 600 years in the Mid-Holocene, and at last began to fluctuate and drop to the current sea level in the late Holocene. The sea level in the northern South China Sea showed a phased change process in the past 2 000 years. First, it showed a downward trend from 0 to 350 CE, and then followed by a rapid sea level rise in 350-850 CE. In 880 CE, the sea level was at its highest point in the past 2 000 years (1.05 ± 0.35) m, and the sea-level continued to decline to (−0.18 ± 0.35) m in 1850 CE, then the sea level basically kept a narrow horizontal fluctuation until 1897 CE (−0.19 ± 0.05) m. Since then, the sea level kept continuous oscillation and gradually rises to 0.076 m in 2 020 CE. If the sea-level in the northern South China Sea in 2100 A.D. is estimated based on the rising rate in the past 100 years, it would be 0.19~0.28 m higher than the current sea level. Therefore, when carrying out large-scale engineering construction in the coastal low-lying areas in this area, it is necessary to consider the adverse effects of future sea-level rise. In addition, it is further found that different sea-level indicators and different reconstruction methods are the main reason for the regional differences of sea-level reconstruction results in the northern South China Sea since the Holocene. On the whole, the sea-level in northern South China Sea has shown a fluctuating downward trend since the Mid-Holocene. Despite the differences in the time and height of sea-level in different regions, the sea-level records in the northern South China Sea are consistent with those in the surrounding coast, suggesting the high sea-level during the Mid-Holocene in the South China Sea, and it is likely to have a global background.

  • 加载中
  • [1] YAN H,SUN L G,WANG Y H,et al. A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies[J]. Nature Geoscience,2011,4(9):611-614. doi: 10.1038/ngeo1231

    CrossRef Google Scholar

    [2] YUE Y F,YU K F,TAO S C,et al. 3500-year western Pacific storm record warns of additional storm activity in a warming warm pool[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,521:57-71.

    Google Scholar

    [3] ZONG Y Q. Mid-Holocene sea-level highstand along the Southeast Coast of China[J]. Quaternary International,2004,117(1):55-67. doi: 10.1016/S1040-6182(03)00116-2

    CrossRef Google Scholar

    [4] 赵希涛,张景文,李桂英. 海南岛南岸全新世珊瑚礁的发育[J]. 地质科学,1983,2(1):51-60,111.

    Google Scholar

    [5] MA Y F,QIN Y M,YU K F,et al. Holocene coral reef development in Chenhang Island,Northern South China Sea,and its record of sea level changes[J]. Marine Geology,2021,440:106593. doi: 10.1016/j.margeo.2021.106593

    CrossRef Google Scholar

    [6] 覃业曼,余克服,王瑞,等. 西沙群岛琛航岛全新世珊瑚礁的起始发育时间及其海平面指示意义[J]. 热带地理,2019,39(3):319-328. doi: 10.13284/j.cnki.rddl.003128

    CrossRef Google Scholar

    [7] 聂宝符,陈特固. 雷州半岛珊瑚礁与全新世高海面[J]. 科学通报,1997,42(5):511-514. doi: 10.3321/j.issn:0023-074X.1997.05.018

    CrossRef Google Scholar

    [8] 赵建新,余克服. 南海雷州半岛造礁珊瑚的质谱铀系年代及全新世高海面[J]. 科学通报,2001,46(20):1734-1738. doi: 10.3321/j.issn:0023-074X.2001.20.016

    CrossRef Google Scholar

    [9] 时小军,余克服,陈特固. 南海周边中全新世以来的海平面变化研究进展[J]. 海洋地质与第四纪地质,2007,27(5):121-132. doi: 10.16562/j.cnki.0256-1492.2007.05.003

    CrossRef Google Scholar

    [10] 时小军,余克服,陈特固,等. 中—晚全新世高海平面的琼海珊瑚礁记录[J]. 海洋地质与第四纪地质,2008,28(5):1-9.

    Google Scholar

    [11] YU K F,ZHAO J X,DONE T,et al. Microatoll record for large century-scale sea-level fluctuations in the Mid-Holocene[J]. Quaternary Research,2009,71(3):354-360. doi: 10.1016/j.yqres.2009.02.003

    CrossRef Google Scholar

    [12] YAN T L,YU K F,WANG R,et al. Records of sea-level highstand over the Meghalayan age/late Holocene from uranium-series ages of beachrock in Weizhou Island,northern South China Sea[J]. The Holocene,2022,11-12(31):1745-1760.

    Google Scholar

    [13] 刘文会,余克服,王瑞,等. 涠洲岛北港海滩岩的铀系年代及其海平面指示意义[J]. 第四纪研究,2020,40(3):764-774. doi: 10.11928/j.issn.1001-7410.2020.03.14

    CrossRef Google Scholar

    [14] YAO Y T,ZHAN W H,SUN J L. Emerged fossil corals on the coast of northwestern Hainan Island,China:Implications for mid-Holocene sea level change and tectonic uplift[J]. Chinese Science Bulletin,2013,58(23):2869-2876. doi: 10.1007/s11434-013-5692-7

    CrossRef Google Scholar

    [15] XIONG H X,ZONG Y Q,QIAN P. Holocene sea-level history of the northern coast of South China Sea[J]. Quaternary Science Reviews,2018,194(15):12-26.

    Google Scholar

    [16] YUE Y F, TANG L C, YU K F, et al. Coral reef records of sea-level highstand and climate events in northern South China Sea during the Mid-Holocene [J]. Unpublished.

    Google Scholar

    [17] AN Z. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews,2000,19(15):171-187. doi: 10.1016/S0277-3791(99)00060-8

    CrossRef Google Scholar

    [18] MORTON B,BLACKMORE G. South China Sea[J]. Marine Pollution Bulletin,2001,42:1236-1263. doi: 10.1016/S0025-326X(01)00240-5

    CrossRef Google Scholar

    [19] 俞慕耕,刘金芳. 南海海流系统与环流形势[J]. 海洋预报,1993,2:13-17.

    Google Scholar

    [20] WANG C Z,WANG W Q,WANG D X,et al. Interannual variability of the South China Sea associated with El Nino[J]. Journal of Geophysical Research,2006,111(C3):C03023.

    Google Scholar

    [21] LIU J B,CHEN F H,CHEN J H,et al. Humid medieval warm period recorded by magnetic characteristics of sediments from Gonghai Lake,Shanxi,North China[J]. 科学通报(英文版),2011,56(23):2464-2474.

    Google Scholar

    [22] YU K F,ZHAO J X. U-series dates of Great Barrier Reef corals suggest at least +0.7 m sea level ~7 000 years ago[J]. The Holocene,2010,20(2):161-168. doi: 10.1177/0959683609350387

    CrossRef Google Scholar

    [23] BARD E,ARNOLD M,FAIRBANKS R G,et al. 230Th-234U and 14C ages obtained by mass spectrometry on corals[J]. Radiocarbon,1993,35(1):191-199. doi: 10.1017/S0033822200013886

    CrossRef Google Scholar

    [24] ZHAO J X,HU K. Thermal ionization mass spectrometry U-series dating of a hominid site near Nanjing,China[J]. Geology,2001,29(1):27-30. doi: 10.1130/0091-7613(2001)029<0027:TIMSUS>2.0.CO;2

    CrossRef Google Scholar

    [25] CLARK T R,ROFF G,ZHAO J,et al. Testing the precision and accuracy of the U-Th chronometer for dating coral mortality events in the last 100 years[J]. Quaternary Geochronology,2014,23:35-45. doi: 10.1016/j.quageo.2014.05.002

    CrossRef Google Scholar

    [26] CHENG H,EDWARDS R L,HOFF J,et al. The half-lives of uranium-234 and thorium-230[J]. Chemical Geology,2000,169(12):17-33. doi: 10.1016/S0009-2541(99)00157-6

    CrossRef Google Scholar

    [27] CHEN H J,EDWARDS R L,WASSERBURG G J. 238U,234U and 232Th in seawater[J]. Earth Planetary Science Letters,1986,80(34):241-251. doi: 10.1016/0012-821X(86)90108-1

    CrossRef Google Scholar

    [28] STIRLING C H,ESAT T M,MCCULLOCH M T,et al. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the Last Interglacial[J]. Earth Planetary Science Letters,1995,135(14):115-130. doi: 10.1016/0012-821X(95)00152-3

    CrossRef Google Scholar

    [29] STUIVER M, REIMER P J, REIMER R W. Calib 8.20. WWW program [EB/OL]. [2022-06-17]. http://calib.org/calib/.

    Google Scholar

    [30] PAULA J R,WILLIAM E N A,EDOUARD B,et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP)[J]. Radiocarbon,2020,62(4):725-757. doi: 10.1017/RDC.2020.41

    CrossRef Google Scholar

    [31] TIMOTHY J H. PETER K,MARTIN B,et al. Marine20—The marine radiocarbon age calibration curve (0–55,000 cal BP)[J]. Radiocarbon,2020,62(4):779-820. doi: 10.1017/RDC.2020.68

    CrossRef Google Scholar

    [32] YU K F,HUA Q,ZHAO J X,et al. Holocene marine C-14 reservoir age variability:Evidence from Th-230-dated corals in the South China Sea[J]. Paleoceanography,2010,25:PA3205.

    Google Scholar

    [33] 詹文欢,刘以宣. 从广东沿海海滩岩探讨历史时期海平面变化[J]. 南海研究与开发,1996,4:30-35.

    Google Scholar

    [34] 张崧,孙现领,王为,等. 广东深圳大鹏半岛海岸地貌特征[J]. 热带地理,2013,33(6):647-658. doi: 10.13284/j.cnki.rddl.002475

    CrossRef Google Scholar

    [35] 宗永强,李平日. 粤东全新世海滩岩形成条件初步分析[J]. 热带地理,1984,4:15-22.

    Google Scholar

    [36] 孙桂华,邱燕,朱本铎. 南海及其周缘地区全新世海平面遗迹的构造含义[J]. 海洋学报,2009,35(5):58-68.

    Google Scholar

    [37] 李平日. 华南全新世海滩岩及其古地理意义[J]. 海洋地质与第四纪地质,1988,1(4):25-33.

    Google Scholar

    [38] 王建华. 华南沿海全新世海滩岩的特征及其意义[J]. 中山大学学报论丛,1992,1:111-122.

    Google Scholar

    [39] 张仲英,刘瑞华. 海南岛沿海的全新世[J]. 地理科学,1987,2:129-138,197.

    Google Scholar

    [40] MA Z B,XIAO J,ZHAO X T,et al. Precise U-series dating of coral reefs from the South China Sea and the high sea level during the Holocene[J]. Journal of Coastal Research,2003,19(2):296-303.

    Google Scholar

    [41] TAO S C,YU K F,YAN H,et al. Annual resolution records of sea-level change since 1850 CE reconstructed from coral δ18O from the South China Sea[J]. Palaeogeography,2022,592(15):110897.

    Google Scholar

    [42] PENG X,MENG X W,LI Z,et al. Late Holocene mangrove development and response to sea level change in the northwestern South China Sea[J]. Acta Oceanologica Sinica,2019,38(11):111-120. doi: 10.1007/s13131-019-1359-9

    CrossRef Google Scholar

    [43] 曹小月,殷勇,贾培宏,等. 海南陵水LDB01钻孔沉积记录与环境演化[J]. 第四纪研究,2016,36(1):31-43.

    Google Scholar

    [44] 陈慧娴,王建华,董玮琛,等. 晚全新世淇澳岛红树林有孔虫记录与古环境意义[J]. 海洋地质与第四纪地质,2020,40(3):74-86.

    Google Scholar

    [45] 赵希涛,彭贵,张景文. 海南岛沿岸全新世地层与海面变化的初步研究[J]. 地质科学,1979,4:350-358.

    Google Scholar

    [46] 周良,王洋,杜学斌,等. 珠江三角洲西缘晚第四纪沉积演化和最大海侵古岸线的重建[J]. 沉积学报,2022,40(1):119-135. doi: 10.14027/j.issn.1000-0550.2020.087

    CrossRef Google Scholar

    [47] 彭杰,杨小强,黄文娅,等. 珠江三角洲全新世海平面升降及其对全球变化的响应[J]. 中山大学学报:自然科学版,2014,56(6):63-72.

    Google Scholar

    [48] ZHAO X T. Ages of formation of the luhuitou coral-reefs,hainan island,and their effects on shoreline changes[J]. Chinese Science Bulletin,1979,24(21):995-998. doi: 10.1360/csb1979-24-21-995

    CrossRef Google Scholar

    [49] ZHAO X T. Development of holocene coral reefs in china and their reflection on sea level changes and tectonic movement[J]. Science in China,SerB,1983,26(4):413-423.

    Google Scholar

    [50] Permanent Service for Mean Sea Level (PSMSL). Tide Gauge Data[EB/OL]. [2022-06-17]. http://www.psmsl.org/data/obtaining/.

    Google Scholar

    [51] 王为. 香港贝澳湾全新世海滩岩的发现及意义[J]. 科学通报,1993,38(3):258-260.

    Google Scholar

    [52] 乐远福,唐立超,余克服. 北大西洋沿岸过去2 000 a海平面变化的若干重要特征[J]. 海洋地质前沿,2022,38(6):1-15.

    Google Scholar

    [53] 唐立超, 乐远福. 海滩岩在南海北部海平面重建中的应用和不确定性分析 [J]. 海洋地质前沿, 已录用.

    Google Scholar

    [54] SIMON E E,BENJAMIN P H,ANDREW C K. Holocene sea-level changes along the United States Atlantic Coast[J]. Oceanography,2011,24(2):70-79. doi: 10.5670/oceanog.2011.28

    CrossRef Google Scholar

    [55] WANG L, SARNTHEIN M, ERLENKEUSER H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea[J]. Marine Geology,1999,156(14):245-284.

    Google Scholar

    [56] 卢汝圻. 广东沿海地区现代地壳垂直运动研究[J]. 华南地震,1997,17(1):25-33.

    Google Scholar

    [57] 詹文欢, 张志强, 孙杰, 等. 南海西北部珊瑚礁区地壳升降速率分析[C]//中国地球物理学会第二十三届年会, 青岛, 2007.

    Google Scholar

    [58] 余克服,陈特固,钟晋梁,等. 雷州半岛全新世高温期珊瑚生长所揭示的环境突变事件[J]. 中国科学:地球科学,2002,32(2):149-156,177.

    Google Scholar

    [59] ZONG Y Q,YIM W S,YU F,et al. Late Quaternary environmental changes in the Pearl River mouth region,China[J]. Quaternary International,2009,206(12):35-45. doi: 10.1016/j.quaint.2008.10.012

    CrossRef Google Scholar

    [60] ZONG Y Q,INNES J B,WANG Z H,et al. Mid-Holocene coastal hydrology and salinity changes in the east Taihu area of the lower Yangtze wetlands,China[J]. Quaternary Research,2011,76(1):69-82. doi: 10.1016/j.yqres.2011.03.005

    CrossRef Google Scholar

    [61] SHENNAN I,PELTIER W R,DRUMMOND R,et al. Global to local scale parameters determining relative sea-level changes and the post-glacial isostatic adjustment of Great Britain[J]. Quaternary Science Reviews,2002,21(13):397-408. doi: 10.1016/S0277-3791(01)00091-9

    CrossRef Google Scholar

    [62] 孙金龙,徐辉龙. 中国的海滩岩研究与进展[J]. 热带海洋学报,2009,1(2):103-108.

    Google Scholar

    [63] 李建生. 广东与海南岛沿海地区新构造运动特征[J]. 自然杂志,1992,8:602-606.

    Google Scholar

    [64] 余克服,钟晋梁,赵建新,等. 雷州半岛珊瑚礁生物地貌带与全新世多期相对高海平面[J]. 海洋地质与第四纪地质,2002,22(2):27-33.

    Google Scholar

    [65] 黄德银,施祺,张叶春. 海南岛鹿回头珊瑚礁与全新世高海平面[J]. 海洋地质与第四纪地质,2005,25(4):1-7.

    Google Scholar

    [66] ZHANG Y Z,ZONG Y Q,XIONG H X,et al. The middle-to-late Holocene relative sea-level history,highstand and levering effect on the east coast of Malay Peninsula[J]. Global Planetary Change,2020,196:103369.

    Google Scholar

    [67] 余克服,陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘,2009,16(6):138-145.

    Google Scholar

    [68] INGRAM B L,SOUTHON J R. Reservoir ages in Eastern Pacific coastal and estuarine waters[J]. Radiocarbon,1996,38(3):573-582. doi: 10.1017/S0033822200030101

    CrossRef Google Scholar

    [69] EISENHAUER A,WASSERBURG G J,CHEN J H,et al. Holocene sea-level determination relative to the Australian continent:U/Th (TIMS) and 14C (AMS) dating of coral cores from the Abrolhos Islands[J]. Earth Planetary Science Letters,1993,114(4):529-547. doi: 10.1016/0012-821X(93)90081-J

    CrossRef Google Scholar

    [70] BARD E,HAMELIN B,FAIRBANKS R G,et al. Calibration of the 14C timescale over the past 30 000 years using mass spectrometric U/Th ages from Barbados corals[J]. Nature,1990,345(6274):405-410. doi: 10.1038/345405a0

    CrossRef Google Scholar

    [71] 余克服,赵建新,施祺,等. 永暑礁西南礁镯生物地貌与沉积环境[J]. 海洋地质与第四纪地质,2003,23(4):1-7.

    Google Scholar

    [72] 刘志杰,余佳,孙晓燕,等. 海洋沉积物14C测年数据整合与校正问题探讨[J]. 第四纪研究,2016,36(2):492-502. doi: 10.11928/j.issn.1001-7410.2016.02.24

    CrossRef Google Scholar

    [73] 余克服. 雷琼海区近40年海温变化趋势[J]. 热带地理,2000,20(2):111-115. doi: 10.3969/j.issn.1001-5221.2000.02.007

    CrossRef Google Scholar

    [74] 余克服,黄耀生,陈特固,等. 雷州半岛造礁珊瑚Porites lutea月分辨率的δ18O温度计研究[J]. 第四纪研究,1999,1:67-72. doi: 10.3321/j.issn:1001-7410.1999.01.008

    CrossRef Google Scholar

    [75] 余克服,陈特固,黄鼎成,等. 中国南沙群岛滨珊瑚δ18O的高分辨率气候记录[J]. 科学通报,2001,46(14):1199-1204. doi: 10.3321/j.issn:0023-074X.2001.14.015

    CrossRef Google Scholar

    [76] 邓文峰,韦刚健,陈雪霏,等. 全新世南海气候环境变化的珊瑚地球化学记录[J]. 矿物岩石地球化学通报,2019,38(6):10578-11072.

    Google Scholar

    [77] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学,2012,42(8):1160-1172.

    Google Scholar

    [78] WEI G J,DENG W F,YU K F,et al. Sea surface temperature records in the northern South China Sea from mid-Holocene coral Sr/Ca ratios[J]. Paleoceanography,2007,22(3):1-13.

    Google Scholar

    [79] STODDART D,SCOFFIN P. Microatolls:Review of Form,Origin and Terminology[J]. Atoll Research Bulletin,1979,224:1-17. doi: 10.5479/si.00775630.224.1

    CrossRef Google Scholar

    [80] WOODROFFE C,ROGER M. Microatolls and recent sea level change on coral atolls[J]. Nature,1990,344:531-534. doi: 10.1038/344531a0

    CrossRef Google Scholar

    [81] SMITHERS S G,WOODROFFE C D. Microatolls as sea-level indicators on a mid-ocean atoll[J]. Marine Geology,2000,186(1):43-48.

    Google Scholar

    [82] 聂宝符. 五千年来南海海平面变化的研究[J]. 第四纪研究,1996,1:80-87. doi: 10.3321/j.issn:1001-7410.1996.01.009

    CrossRef Google Scholar

    [83] SMITHERS S. Sea-level Indicators[C]//: Hopley, D. (Ed. ), Encyclopedia of Modern Coral Reefs: Structure, Form and Process. Springer Netherlands, 2011, Dordrecht: 978-991.

    Google Scholar

    [84] MELTZNER A J, WOODROFFE C D. Coral microatolls[C]//Shennan I, Long, AJ., Horton, BP(Eds. ), Handbook of Sea‐Level Research, 2015: 125-145.

    Google Scholar

    [85] VAN W R,GOLBUU Y,ROFF G. Keep up or drown:adjustment of western Pacific coral reefs to sea-level rise in the 21st century[J]. Royal Society Open Science,2015,2:150181. doi: 10.1098/rsos.150181

    CrossRef Google Scholar

    [86] HALLMANN N,CAMOIN G,EISENHAUER A,et al. Reconstructing Mid to Late Holocene sea-level change from coral microatolls,French Polynesia[J]. Geophysical Research Abstracts,2017:1519-1539.

    Google Scholar

    [87] HALLMANN N,CAMOIN G,EISENHAUER A,et al. Ice volume and climate changes from a 6 000 year sea-level record in French Polynesia[J]. Nature Communications,2018,9(285):1-12.

    Google Scholar

    [88] WEIL‐ACCARDO J,FEUILLET N,SATAKE K,et al. Relative sea‐Level changes over the past centuries in the central ryukyu arc Inferred from coral microatolls[J]. Journal of Geophysical Research:Solid Earth,2020,125:e2019JB018466.

    Google Scholar

    [89] 余克服,赵建新. 南沙永暑礁表层珊瑚年代结构及其环境记录[J]. 海洋地质与第四纪地质,2004,24(4):25-28.

    Google Scholar

    [90] TJIA H D. Sea-level changes in the tectonically stable Malay-Thai Peninsula[J]. Quaternary International,1996,31(1):95-101.

    Google Scholar

    [91] DAVIS A M,AITCHISON J C,FLOOD P G,et al. Late Holocene higher sea-level indicators from the South China coast[J]. Marine Geology,2000,171(1-4):1-5. doi: 10.1016/S0025-3227(00)00113-4

    CrossRef Google Scholar

    [92] TANABE S,HORI K,SAITO Y,et al. Song Hong (Red River) delta evolution related to millennium-scale Holocene sea-level changes[J]. Quaternary ence Reviews,2003,22(21-22):2345-2361.

    Google Scholar

    [93] MELTZNER A J,HORTON B P,SWITZER A D,et al. Precise Timing and Elevation of the Mid-Holocene Highstand at Belitung Island,Indonesia,on the Sunda Shelf,from Coral Microatolls[J]. AGU Fall Meeting Abstracts,2011:965.

    Google Scholar

    [94] STATTEGGER K,TJALLINGII R,SAITO Y,et al. Mid to late Holocene sea-level reconstruction of Southeast Vietnam using beachrock and beach-ridge deposits[J]. Global Planetary Change,2013,110:214-222. doi: 10.1016/j.gloplacha.2013.08.014

    CrossRef Google Scholar

    [95] PARHAM P R,SAITO Y,SAPON N,et al. Evidence for ca. 7-ka maximum Holocene transgression on the Peninsular Malaysia east coast[J]. Journal of Quaternary ence,2014,29(5):414-422.

    Google Scholar

    [96] MELTZNER A J, HORTON B P, SWITZER A D, et al. Precise Timing and elevation of the Mid-Holocene highstand at Belitung Island, Indonesia, on the Sunda Shelf, from Coral Microatolls[J]. AGU Fall Meeting Abstracts, 2011, 11: 2011AGUFMGC43D0965M.

    Google Scholar

    [97] LAMBECK K. Sea level change through the last glacial cycle[J]. Science,2001,292(5517):679-686. doi: 10.1126/science.1059549

    CrossRef Google Scholar

    [98] FAIRBANKS R G. A 17,000-year glacio-eustatic sea level record:influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation[J]. Nature,1989,342(6250):637-642. doi: 10.1038/342637a0

    CrossRef Google Scholar

    [99] CUTLER K B,EDWARDS R L,TAYLOR F W,et al. Rapid sea-level fall and deep-ocean temperature change since the last interglacial period[J]. Earth Planetary Science Letters,2003,206(3-4):253-271. doi: 10.1016/S0012-821X(02)01107-X

    CrossRef Google Scholar

    [100] PELTIER A W R,FAIRBANKS B R G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record[J]. Quaternary Science Reviews,2006,25(23-24):3322-3337. doi: 10.1016/j.quascirev.2006.04.010

    CrossRef Google Scholar

    [101] CLARK P U,DYKE A S,SHAKUN J D,et al. The Last Glacial Maximum[J]. Science,2009,325(5941):710-714. doi: 10.1126/science.1172873

    CrossRef Google Scholar

    [102] CLARK P U,SHAKUN J D,BAKER P A,et al. Global climate evolution during the last deglaciation[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(19):7140-7141.

    Google Scholar

    [103] BERGER A L. Long-term variations of daily insolation and Quaternary climatic changes[J]. Journal of the Atmospheric Sciences,1978,35(12):2362-2367. doi: 10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2

    CrossRef Google Scholar

    [104] SIROCKO F,SARNTHEIN M,ERLENKEUSER H,et al. Century-scale events in monsoonal climate over the past 24 000 years[J]. Nature,1993,364(6435):322-324. doi: 10.1038/364322a0

    CrossRef Google Scholar

    [105] LETCHER, TM. Climate Change [M]// FOSTER N L, ATTRILL M J. Third Edition, Amsterdam: Elsevier, 2021: 427-443.

    Google Scholar

    [106] MENDELSOHN R,EMANUEL K,SHUN C. The impact of climate change on global tropical cyclone damage[J]. Nature Climate Change,2012,2(3):205-209. doi: 10.1038/nclimate1357

    CrossRef Google Scholar

    [107] CHURCH J A,WHITE N J. Sea-Level rise from the late 19th to the early 21st century[J]. Surveys in Geophysics,2011,32(4):585-602.

    Google Scholar

    [108] 国家海洋局. 2021年中国海平面公报 [R]. http://gi.mnr.gov.cn/202205/t20220507_2735509.html. 2021.

    Google Scholar

    [109] 刘睿,刘晓东,刘恒. 基于CMIP5多模式集合预估东海和南海21世纪海平面高度变化[J]. 地球环境学报,2020,11(4):412-428.

    Google Scholar

    [110] 盛芳,智海,刘海龙,等. 中国近海海平面变化趋势的对比分析[J]. 气候与环境研究,2016,21(3):346-356.

    Google Scholar

    [111] 潘轶,岳建平,宋亚宏,等. 1993~2015年中国南海海平面变化的初步研究[J]. 地理空间信息,2017,15(10):9-12. doi: 10.3969/j.issn.1672-4623.2017.10.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2682) PDF downloads(96) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint