2023 Vol. 39, No. 2
Article Contents

CHEN Ming, SUN Dianqiang, WU Jinbo, QU Changwei, LI Shenzhuan. Reservoir characteristics and cutoffs of low resistivity reservoir in Songtao Uplift, Qiongdongnan Basin[J]. Marine Geology Frontiers, 2023, 39(2): 17-27. doi: 10.16028/j.1009-2722.2021.264
Citation: CHEN Ming, SUN Dianqiang, WU Jinbo, QU Changwei, LI Shenzhuan. Reservoir characteristics and cutoffs of low resistivity reservoir in Songtao Uplift, Qiongdongnan Basin[J]. Marine Geology Frontiers, 2023, 39(2): 17-27. doi: 10.16028/j.1009-2722.2021.264

Reservoir characteristics and cutoffs of low resistivity reservoir in Songtao Uplift, Qiongdongnan Basin

More Information
  • To finely characterize reservoir property, understand the genesis and main controlling factors, and quantitatively determine the cutoffs of low-resistivity reservoir in Songtao Uplift of the Qiongdongnan Basin in South China Sea, conventional logging, nuclear magnetic resonance logging, resistivity imaging logging, and formation testing data, as well as the core data were analyzed. Results show that the lithology of the low-resistivity reservoir is mainly fine-grained sandstone, including siltstone, argillaceous siltstone, and bioclastic sandstone. The porosity and permeability vary greatly, and the resistivity increase factor is less than 1.5. The sedimentary environment was sea shore, featuring fine-grained materials that have poor pore structure and pore connectivity. This feature resulted in the high content of pore irreducible water and capillary irreducible water in the sedimentary rock, which is the key reason for the low-resistivity oil reservoir, while mud invasion, conductive minerals, and additional conductivity of clay minerals had little effect on the reservoir resistivity. Therefore, the reservoir cutoffs were analyzed and determined quantitatively, including pore radius, porosity, permeability, resistivity, oil saturation, and clay content. This study paved road for identification and evaluation of low-contrast reservoir and will accelerate the development of low-resistance reservoirs in the study area.

  • 加载中
  • [1] 程相志,周灿灿,范宜仁,等. 淡水油藏中低对比度油气层成因及识别技术[J]. 石油天然气学报,2007,29(6):62-65. doi: 10.3969/j.issn.1000-9752.2007.06.015

    CrossRef Google Scholar

    [2] 段健,朱露. 南堡油田浅层低对比度油层识别方法研究[J]. 海洋石油,2018,38(4):62-66. doi: 10.3969/j.issn.1008-2336.2018.04.062

    CrossRef Google Scholar

    [3] 汪爱云,宋延杰,刘江,等. 葡西地区低阻油层的成因[J]. 大庆石油学院学报,2005,29(1):18-20.

    Google Scholar

    [4] 单祥,季汉成,刘计国,等. 尼日尔Agadem区块古近系Sokor1组低阻油层成因[J]. 东北石油大学学报,2014,38(2):27-34. doi: 10.3969/j.issn.2095-4107.2014.02.004

    CrossRef Google Scholar

    [5] 吴金龙,孙建孟,朱家俊,等. 济阳坳陷低阻油层微观成因机理的宏观地质控制因素研究[J]. 中国石油大学学报(自然科学版),2006,30(3):22-25. doi: 10.3321/j.issn:1000-5870.2006.03.005

    CrossRef Google Scholar

    [6] 郭顺,王震亮,张小莉,等. 陕北志丹油田樊川区长6~1低阻油层成因分析与识别方法[J]. 吉林大学学报(地球科学版),2012,42(1):18-24.

    Google Scholar

    [7] 金宝强,陈建波,舒晓,等. 渤海海域馆陶组低阻油层沉积特征及其控制作用:以QHD油田为例[J]. 海洋地质前沿,2021,37(8):17-22.

    Google Scholar

    [8] 李子悦,毛志强,徐锦绣,等. LD油田东营组二段油层低阻成因及沉积背景[J]. 东北石油大学学报,2018,42(4):85-91. doi: 10.3969/j.issn.2095-4107.2018.04.008

    CrossRef Google Scholar

    [9] 王绪诚,于水明,姜建,等. 恩平凹陷新近系低阻油层地质成因分析[J]. 科技通报,2018,34(5):11-15.

    Google Scholar

    [10] 杨勇,林承焰,祝鹏. 涠洲11-1油田角尾组低阻油藏成因机理及测井评价方法[J]. 海洋地质前沿,2016,32(4):58-62.

    Google Scholar

    [11] 何胜林,张海荣,陈嵘,等. 东方1-1气田低电阻率气层测井评价方法[J]. 天然气工业,2012,32(8):27-30. doi: 10.3787/j.issn.1000-0976.2012.08.006

    CrossRef Google Scholar

    [12] 朱伟林,张功成,高乐. 南海北部大陆边缘盆地油气地质特征与勘探方向[J]. 石油学报,2008,29(1):1-9. doi: 10.3321/j.issn:0253-2697.2008.01.001

    CrossRef Google Scholar

    [13] 姚哲,张金锋,朱继田,等. 琼东南盆地深水区天然气水合物运聚成藏模式[J]. 海洋地质前沿,2021,37(7):22-32. doi: 10.16028/j.1009-2722.2021.124

    CrossRef Google Scholar

    [14] 杨计海,黄保家,杨金海. 琼东南盆地深水区松南低凸起天然气成藏条件与勘探潜力[J]. 中国海上油气,2019,31(2):1-10.

    Google Scholar

    [15] 李胜勇,胡林,甘军,等. 琼东南盆地深水区陵南低凸起古潜山油气成藏条件[J]. 海洋地质前沿,2021,37(7):68-75.

    Google Scholar

    [16] 朱伟林. 南海北部深水区油气地质特征[J]. 石油学报,2010,31(4):521-527. doi: 10.7623/syxb201004001

    CrossRef Google Scholar

    [17] 欧阳健,修立军,石玉江,等. 测井低对比度油层饱和度评价与分布研究及其应用[J]. 中国石油勘探,2009,14(1):38-52. doi: 10.3969/j.issn.1672-7703.2009.01.007

    CrossRef Google Scholar

    [18] 李瑞彪,陈兆明,石宁,等. 高分辨率FMI成像测井在珠江口盆地番禺B洼勘探中的应用及其指示意义[J]. 海洋地质前沿,2020,36(5):64-72.

    Google Scholar

    [19] 马旭鹏. 储层物性参数与其微观孔隙结构的内在联系[J]. 勘探地球物理进展,2010,33(3):216-219.

    Google Scholar

    [20] 庞河清,曾焱,刘成川,等. 川西坳陷须五段储层微观孔隙结构特征及其控制因素[J]. 中国石油勘探,2017,22(4):48-60. doi: 10.3969/j.issn.1672-7703.2017.04.005

    CrossRef Google Scholar

    [21] 彭军,韩浩东,夏青松,等. 深埋藏致密砂岩储层微观孔隙结构的分形表征及成因机理:以塔里木盆地顺托果勒地区柯坪塔格组为例[J]. 石油学报,2018,39(7):775-791. doi: 10.7623/syxb201807005

    CrossRef Google Scholar

    [22] 王友净,宋新民,何鲁平,等. 南尚堡深层低阻油层的地质成因[J]. 石油学报,2010,31(3):426-431. doi: 10.7623/syxb201003013

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(1292) PDF downloads(81) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint