2022 Vol. 38, No. 3
Article Contents

HU Hewei, LI Huiyong, XIAO Shuguang, LI Junwei, DING Yiran. Characteristics of strike-slip faults on the western Shaleitian Uplift and their control over oil and gas accumulation[J]. Marine Geology Frontiers, 2022, 38(3): 36-44. doi: 10.16028/j.1009-2722.2021.210
Citation: HU Hewei, LI Huiyong, XIAO Shuguang, LI Junwei, DING Yiran. Characteristics of strike-slip faults on the western Shaleitian Uplift and their control over oil and gas accumulation[J]. Marine Geology Frontiers, 2022, 38(3): 36-44. doi: 10.16028/j.1009-2722.2021.210

Characteristics of strike-slip faults on the western Shaleitian Uplift and their control over oil and gas accumulation

  • Based on the data of 3D seismic, drilling, logging and lithology, the plane and sectional characteristics of the F2 strike-slip fault in the west part of the Shaleitian Uplift are described in detail in this paper. The forming mechanism of the fault is simulated by physical experiments, and the controlling factors over oil and gas accumulation is discussed. The results show that the plane characteristics of F2 strike-slip fault in the west part of Shaleitian Uplift are quite different with its sectional features. On the plane, the middle and deep parts of the fault are smooth and isolated, and the shallow part is a broom-like fault consisting of several secondary faults. On the section, however, the southwest section of the F2 strike-slip fault shows a "flower-like" structure, whereas the northeast section is in a simple "Y" shape. The physical simulation suggests that the forming mechanism of the fault is jointly controlled by the pre-existing basement fault and the lithology of the two sides of the fault. The southwest segment is dominated by weak extension in Paleogene, superimposed by the strong dextral strike-slip in Neogene. In the plane view, however, it is in a broom shape. The northeast segment of the fault shows strong extension in Paleogene, superimposed by dextral weak strike-slip in Neogene, resulted in a horsetail style of structure. The development and evolution process of F2 strike-slip fault is the major factor controlling the shape and scale of traps in the study area, the development and formation of sandstone skeleton transport system and the fault transport system as well as the scale and type of sedimentary reservoirs of the Dongying Formation in the study area. Moreover, it may also improve the physical properties of Archean buried hill reservoirs and provide a reference for future exploration and evaluation in the study area.

  • 加载中
  • [1] 夏庆龙. 渤海海域油气藏形成分布与资源潜力[M]. 北京: 石油工业出版社, 2012: 186-190.

    Google Scholar

    [2] 石文龙,张志强,彭文绪,等. 渤海西部沙垒田凸起东段构造演化特征与油气成藏[J]. 石油与天然气地质,2013,34(2):242-247. doi: 10.11743/ogg20130216

    CrossRef Google Scholar

    [3] 黄雷,周心怀,王应斌,等. 渤海西部海域新生代构造与演化及对油气聚集的控制[J]. 地质科学,2013,48(1):275-290. doi: 10.3969/j.issn.0563-5020.2013.01.019

    CrossRef Google Scholar

    [4] 彭文绪,张志强,姜利群,等. 渤海西部沙垒田凸起区走滑断层演化及其对油气的控制作用[J]. 石油学报,2012,33(2):204-212. doi: 10.7623/syxb201202004

    CrossRef Google Scholar

    [5] 彭文绪,张如才,樊建华,等. 渤海海域西部凸起区大型雁列断层特征[J]. 石油地球物理勘探,2011,46(5):795-801.

    Google Scholar

    [6] 张正涛,林畅松,李慧勇,等. 渤海西部海域新生代盖层特征及对油气的控制作用[J]. 地质力学学报,2019,25(3):357-369. doi: 10.12090/j.issn.1006-6616.2019.25.03.033

    CrossRef Google Scholar

    [7] 张正涛,林畅松,李慧勇,等. 渤西地区新生代断裂体系特征及形成演化[J]. 科学技术与工程,2019,19(27):60-70.

    Google Scholar

    [8] 李新琦,高磊,黄志,等. 渤海湾盆地沙南凹陷构造发育与演化特征[J]. 海洋地质前沿,2019,35(11):22-30.

    Google Scholar

    [9] 康海亮,林畅松,牛成民,等. 渤海西部海域沙垒田凸起古近系边缘断裂构造样式与沉积充填响应[J]. 天然气地球科学,2017,28(2):254-261. doi: 10.11764/j.issn.1672-1926.2017.01.001

    CrossRef Google Scholar

    [10] 康海亮,林畅松,牛成民. 渤海西部沙东南构造带东营组古地貌特征及对沉积的控制作用[J]. 地质力学学报,2021,27(1):19-30. doi: 10.12090/j.issn.1006-6616.2021.27.01.003

    CrossRef Google Scholar

    [11] 刘强虎,朱筱敏,李顺利,等. 沙垒田凸起西部断裂陡坡型源—汇系统[J]. 地球科学:中国地质大学学报,2017,42(11):14.

    Google Scholar

    [12] 李顺利,朱筱敏,李慧勇,等. 源-汇系统要素定量表征及耦合模式:以沙垒田凸起与沙南凹陷沙河街组为例[J]. 中国海上油气,2017,29(4):39-50.

    Google Scholar

    [13] 祝彦贺,刘丽芳,吴克强,等. 渤海湾盆地沙南凹陷曹妃甸14-5区沙河街组砂体成因分析[J]. 海洋石油,2010,30(4):7-14. doi: 10.3969/j.issn.1008-2336.2010.04.007

    CrossRef Google Scholar

    [14] 黄雷. 走滑作用对渤海凸起区油气聚集的控制作用:以沙垒田凸起为例[J]. 地学前缘,2015,22(3):68-76.

    Google Scholar

    [15] 江涛,李慧勇,于海波,等. 渤海西部沙垒田凸起东、西段油气成藏差异性[J]. 断块油气田,2016,23(1):20-24.

    Google Scholar

    [16] MCCLAY K R, ELIS P G. Analogue models of extensional fault geometires[J]. Geological Society Special Publications, 1987, 28(1): 109-125.

    Google Scholar

    [17] MCCLAY K R, ELLIS P G, Geometries of extensional faults systems developed in model experiments[J]. Geology, 1987, 15: 341-344.

    Google Scholar

    [18] 周建勋,陆克政. 构造形成序列的砂箱实验研究:以黄骅盆地中区新生代构造为例[J]. 大地构造与成矿学,1999,23(1):65-71. doi: 10.3969/j.issn.1001-1552.1999.01.009

    CrossRef Google Scholar

    [19] 王春阳. 塔西南褶皱-冲断带变形控制因素物理模拟研究[D]. 杭州: 浙江大学, 2014.

    Google Scholar

    [20] 江涛,黄晓波,李慧勇,等. 渤西伸展背景下先存-新生断裂体系特征及控藏作用[J]. 海洋地质前沿,2020,36(11):29-36.

    Google Scholar

    [21] 徐长贵. 渤海走滑转换带及其对大中型油气田形成的控制作用[J]. 地球科学,2016,9(41):118-130.

    Google Scholar

    [22] 张正涛,林畅松,李慧勇,等. 渤海湾盆地沙垒田地区新近纪走滑断裂发育特征及其对油气富集的控制作用[J]. 石油与天然气地质,2019,40(4):778-788.

    Google Scholar

    [23] 林畅松,张燕梅. 盆地的形成和充填过程模拟:以拉伸盆地为例[J]. 地学前缘,1999,6(B05):139-146.

    Google Scholar

    [24] 张照录,王华,杨红. 含油气盆地的输导体系研究[J]. 石油与天然气地质,2000,21(2):133-135. doi: 10.3321/j.issn:0253-9985.2000.02.010

    CrossRef Google Scholar

    [25] 张卫海,查明,曲江秀. 油气输导体系的类型及配置关系[J]. 新疆石油地质,2003,24(2):118-120. doi: 10.3969/j.issn.1001-3873.2003.02.008

    CrossRef Google Scholar

    [26] 付广,薛永超,付晓飞. 油气运移输导系统及其对成藏的控制[J]. 新疆石油地质,2001,22(1):24-26. doi: 10.3969/j.issn.1001-3873.2001.01.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(1144) PDF downloads(179) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint