2022 Vol. 37, No. 1
Article Contents

SUN Haixuan, LI Lei, DING Sheng, WANG Pengfei, GONG Guangchuan. Sedimentary architecture of the Central Canyon in L area of Qiongdongnan Basin and their evolution and controlling factors[J]. Marine Geology Frontiers, 2022, 38(1): 61-71. doi: 10.16028/j.1009-2722.2021.154
Citation: SUN Haixuan, LI Lei, DING Sheng, WANG Pengfei, GONG Guangchuan. Sedimentary architecture of the Central Canyon in L area of Qiongdongnan Basin and their evolution and controlling factors[J]. Marine Geology Frontiers, 2022, 38(1): 61-71. doi: 10.16028/j.1009-2722.2021.154

Sedimentary architecture of the Central Canyon in L area of Qiongdongnan Basin and their evolution and controlling factors

More Information
  • The sedimentary architecture and evolution of submarine canyons have received considerable attention in the deep water research. Based on the high-resolution 3D seismic data around 300 km2 from the L area of Qiongdongnan Basin and the regional geological data, using seismic facies analysis and seismic attribute technology as means, this paper analyzes the 3D characteristics of the sedimentary architecture of the central canyon during Huangliu Period. We reach the followings as conclusions: There are six kinds of sedimentary units in the Central Canyon, namely, mass transport deposits, gravity flow channel deposits, levee deposits, basal lag deposits, lobe deposits, hemipelagic drapes deposits; According to the relative strength of erosion and sedimentation, the gravity flow channel in the study area can be classified into erosional and accretional channels, and according to the restrictive strength, they can be classified into strongly restricted channels, weakly restricted channels and non-restricted channels; The whole canyon can be regarded as a channel complex system consisting of three-phase channel complex sets. Due to the later erosion of the early formed channel deposits by the late channels, there are three overlapping styles in the study area: the vertical overlapping, the lateral overlapping and the composite overlapping.

  • 加载中
  • [1] 王长盛,朱俊江,赵冬冬,等. 全球海底峡谷成因及演化研究[J]. 海洋地质前沿,2021,37(3):1-15.

    Google Scholar

    [2] LEWIS K B,PANTIN H M. Channel-axis,overbank and drift sediment waves in the southern Hikurangi Trough,New Zealand[J]. Marine Geology,2002,192(1):123-151.

    Google Scholar

    [3] LEWIS K B,BARNES P M. Kaikoura Canyon,New Zealand:active conduit from near-shore sediment zones to trench-axis channel[J]. Marine Geology,1999,62(1):39-69.

    Google Scholar

    [4] AMBLAS D,GERBER T P,CANALS M,et al. Transient erosion in the Valencia Trough turbidite systems,NW Mediterranean Basin[J]. Geomorphology,2011,130(3/4):173-184. doi: 10.1016/j.geomorph.2011.03.013

    CrossRef Google Scholar

    [5] MICALLEF A, MOUNTJOY J J, BARNES P M, et al. Geomorphic response of submarine canyons to tectonic activity: insights from the Cook Strait canyon system, New Zealand[J]. Geosphere, 2014, 10: 905-929.

    Google Scholar

    [6] 许怀智,蔡东升,孙志鹏,等. 琼东南盆地中央峡谷沉积充填特征及油气地质意义[J]. 地质学报,2012,86(4):641-650. doi: 10.3969/j.issn.0001-5717.2012.04.010

    CrossRef Google Scholar

    [7] 苏明,解习农,王振峰,等. 南海北部琼东南盆地中央峡谷体系沉积演化[J]. 石油学报,2013,34(3):467-478. doi: 10.7623/syxb201303007

    CrossRef Google Scholar

    [8] 李冬,王英民,王永凤,等. 琼东南盆地中央峡谷深水天然堤-溢岸沉积[J]. 沉积学报,2011,29(4):689-694.

    Google Scholar

    [9] SHANG Z L,XIE X N,LI X S,et al. Difference in full-filled time and its controlling factors in the Central Canyon of the Qiongdongnan Basin[J]. Acta Oceanologica Sinica,2015,34(10):81-89. doi: 10.1007/s13131-015-0717-5

    CrossRef Google Scholar

    [10] LIANG C,XIE X,HE Y L,et al. Multiple sediment sources and topographic changes controlled the depositional architecture of a palaeoslope-parallel canyon in the Qiongdongnan Basin,South China Sea[J]. Marine and Petroleum Geology,2020,113(C):104-161.

    Google Scholar

    [11] 李超,陈国俊,沈怀磊,等. 琼东南盆地中央峡谷沉积充填特征与储层分布规律[J]. 石油学报,2013,34(S2):74-82. doi: 10.7623/syxb2013S2009

    CrossRef Google Scholar

    [12] 谭建财,范彩伟,任科英,等. 琼东南盆地北部构造变换带及其油气地质意义[J]. 油气地质与采收率,2014,21(2):62-65,115. doi: 10.3969/j.issn.1009-9603.2014.02.016

    CrossRef Google Scholar

    [13] 雷超,任建业,裴健翔,等. 琼东南盆地深水区构造格局和幕式演化过程[J]. 地球科学(中国地质大学学报),2011,36(1):151-162.

    Google Scholar

    [14] 任建业. 中国近海海域新生代成盆动力机制分析[J]. 地球科学,2018,43(10):3337-3361.

    Google Scholar

    [15] 汪新光,张辉,陈之贺,等. 琼东南盆地陵水区中央峡谷水道沉积数值模拟[J]. 地质科技通报,2021,40(5):1-12.

    Google Scholar

    [16] 雷超,任建业,李绪深,等. 琼东南盆地深水区结构构造特征与油气勘探潜力[J]. 石油勘探与开发,2011,38(5):560-569.

    Google Scholar

    [17] 左倩媚,张道军,何卫军,等. 琼东南盆地深水区中央峡谷黄流组物源特征[J]. 海洋学报,2015,37(5):15-23.

    Google Scholar

    [18] 宋鹏. 琼东南盆地深水区浅层运聚系统及其对天然气水合物成藏的控制[J]. 海洋地质前沿,2021,37(7):11-21.

    Google Scholar

    [19] 苏明,姜涛,张翠梅,等. 琼东南盆地中央峡谷体系东段形态-充填特征及其地质意义[J]. 吉林大学学报(地球科学版),2014,44(6):1805-1815.

    Google Scholar

    [20] 雷振宇,苏明,张莉,等. 南海北部陆坡琼东南盆地晚中新世以来沉积物来源及输送样式[J]. 海洋学研究,2016,34(2):35-42. doi: 10.3969/j.issn.1001-909X.2016.02.005

    CrossRef Google Scholar

    [21] 刘见宝,孙珍,刘彦宾,等. 琼东南盆地新生代构造研究现状及展望[J]. 海洋地质前沿,2012,28(4):1-9.

    Google Scholar

    [22] NWOKO J,KANE L,HUUSE M. Mass transport deposit MTDs relief as a control on post-MTDs sedimentation:insights from the Taranaki Basin,offshore New Zealand[J]. Marine and Petroleum Geology,2020,120:104489. doi: 10.1016/j.marpetgeo.2020.104489

    CrossRef Google Scholar

    [23] MOSCARDELLI L, WOOD L, MANN P. Mass-transport complexes and associated processes in the offshore area of Trinidad and Venezuela[J]. AAPG Bulletin, 2006, 90 (7): 1059-1088.

    Google Scholar

    [24] HUENE V,RANERO C R,WATTS P. Tsunamigenic slope failure along the Middle America Trench in two tectonic settings[J]. Marine Geology,2004,203(3):303-317.

    Google Scholar

    [25] SUN Q L,ALVES T. Petrophysics of fine-grained mass-transport deposits:a critical review[J]. Journal of Asian Earth Sciences,2020,192:104291. doi: 10.1016/j.jseaes.2020.104291

    CrossRef Google Scholar

    [26] WU N,JACKSON C A-L,JOHNSON H,et al. Lithological,petrophysical and seal properties of masstransport complexes (MTCs),Northern Gulf of Mexico[J]. AAPG Bulletin,2021,105(7):1461-1489. doi: 10.1306/06242019056

    CrossRef Google Scholar

    [27] NEWTON C S, SHIPP R C, MOSHER D C, et al. Importance of mass transport complexes in the Quaternary development of the Nile Fan, Egypt[C]//Proceedings of the Annual Offshore Technology, Houston, Texas, U.S.A, 2004: OTC16742.

    Google Scholar

    [28] ARMITAGE D A, ROMANS B W, COVAULT J A, et al. The influence of mass-transport-deposit surface topography on the evolution of turbidite architecture: the eierra contreras, Tres Pasos Formation (Cretaceous), Southern Chile[J]. Journal of Sedimentary Research, 2009, 79 (5): 287-301.

    Google Scholar

    [29] POSAMENTIER H W. Depositional elements associated with a basin floor channel-levee system:case study from the Gulf of Mexico[J]. Marine and Petroleum Geology,2003,20(6):677-690.

    Google Scholar

    [30] 周川,范奉鑫,栾振东,等. 南海北部陆架主要地貌特征及灾害地质因素[J]. 海洋地质前沿,2013,29(1):51-60.

    Google Scholar

    [31] 董艳蕾,朱筱敏,李德江,等. 渤海湾盆地辽东湾地区古近系地震相研究[J]. 沉积学报,2007,25(4):554-563. doi: 10.3969/j.issn.1000-0550.2007.04.009

    CrossRef Google Scholar

    [32] 李磊,邹韵,张鹏,等. 深水弯曲水道几何形态定量分析:以赤道几内亚Rio Muni盆地为例[J]. 海洋地质前沿,2019,35(10):23-35.

    Google Scholar

    [33] 王鹏伟,李华,陈诚,等. 深水重力流沉积类型与储集性能研究:以鄂尔多斯盆地西缘奥陶系拉什仲组为例[J]. 海洋地质前沿,2020,36(1):59-66.

    Google Scholar

    [34] 陈亮,赵千慧,王英民,等. 深水水道沉积单元及演化分析[J]. 海洋地质前沿,2020,36(3):12-19.

    Google Scholar

    [35] 熊浩浩,王振奇,付欢,等. 西非下刚果盆地刚果扇A区块中新统深水水道分类及演化[J]. 海相油气地质,2014,19(2):64-69. doi: 10.3969/j.issn.1672-9854.2014.02.009

    CrossRef Google Scholar

    [36] 王振奇,肖洁,龙长俊,等. 下刚果盆地A区块中新统深水水道沉积特征[J]. 海洋地质前沿,2013,29(3):5-12.

    Google Scholar

    [37] 袁圣强. 南海北部陆坡区深水水道沉积体系研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2009.

    Google Scholar

    [38] 赵晓明,吴胜和,刘丽. 尼日尔三角洲盆地Akpo油田新近系深水浊积水道储层构型表征[J]. 石油学报,2012,33(6):1049-1058. doi: 10.7623/syxb201206018

    CrossRef Google Scholar

    [39] 孙立春,汪洪强,何娟,等. 尼日利亚海上区块近海底深水水道体系地震响应特征与沉积模式[J]. 沉积学报,2014,32(6):1140-1152.

    Google Scholar

    [40] 田洁. 南海西北陆坡区新生代碳酸盐台地周缘深水沉积体系研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2015.

    Google Scholar

    [41] 王亚辉,张道军,赵鹏肖,等. 南海北部琼东南盆地中央峡谷成因新认识[J]. 海洋学报,2016,38(11):97-104.

    Google Scholar

    [42] 李华,王英民,徐强,等. 深水单向迁移水道-堤岸沉积体系特征及形成过程[J]. 现代地质,2013,27(3):653-661. doi: 10.3969/j.issn.1000-8527.2013.03.017

    CrossRef Google Scholar

    [43] 田冬梅,姜涛,张道军,等. 海底水道特征及其成因机制:以莺歌海盆地乐东区莺歌海组一段为例[J]. 地球科学,2017,42(1):130-141.

    Google Scholar

    [44] SHANMUGAN G. Deep-marine tidal bottom currents and their re-worked sands in modern and ancient submarine canyons[J]. Marine and Petroleum Geology,2003,20(5):471-491. doi: 10.1016/S0264-8172(03)00063-1

    CrossRef Google Scholar

    [45] 李俞峰. 南海西北部北礁凹陷中新统深水沉积体系及油气意义[D]. 西安: 西北大学, 2017.

    Google Scholar

    [46] SONG G Z,WANG H,GAN H J. Palegene tectonic evolution controls on sequence stratigraphic patterns in the central Part of deepwater area of Qiongdongnan Basin,northern South China Sea[J]. Journal of Earth Science,2014,25(2):275-288. doi: 10.1007/s12583-014-0433-7

    CrossRef Google Scholar

    [47] 熊鹏飞,姜涛,匡增桂,等. 琼东南盆地南部梅山组丘状体沉积特征及成因机制[J]. 地质科技通报,2021,40(4):11-21.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(1500) PDF downloads(21) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint