2022 Vol. 37, No. 1
Article Contents

MENG Qingguo, LIU Changling, LI Chengfeng, HAO Xiluo. Experimental study on the forming process of multi-component gas hydrates in Qilian Mountain permafrost area[J]. Marine Geology Frontiers, 2022, 38(1): 72-79. doi: 10.16028/j.1009-2722.2020.128
Citation: MENG Qingguo, LIU Changling, LI Chengfeng, HAO Xiluo. Experimental study on the forming process of multi-component gas hydrates in Qilian Mountain permafrost area[J]. Marine Geology Frontiers, 2022, 38(1): 72-79. doi: 10.16028/j.1009-2722.2020.128

Experimental study on the forming process of multi-component gas hydrates in Qilian Mountain permafrost area

More Information
  • Multi-component gas hydrates are widely distributed in the fractured layers of the Qilian Mountain permafrost area. It is of great significance to the study of forming processes of the multi-component gas hydrates and better understanding of the formation mechanism of the natural gas hydrates in the Qilian Mountain area. Copying the gas samples released from the Qilian Mountain gas hydrates, multi-component gas samples were artificially prepared. Based on the visual observations under different temperature-pressure conditions, the formation processes of multi-component gas hydrates were respectively studied in pure water, mine water samples and sediment cores collected from Qilian Mountain hydrate deposit area. Based on the morphological characteristics of the multi-component gas hydrates, the influences of different reaction media (mine water salinities and sediments) on the formation of multi-component gas hydrates are discussed. In the pure water system, the multi-component gas hydrates are formed in various forms, such as pine needle, hair filament and block, which appear preferentially at the gas-liquid interfaces and the vessel wall. Compared to the pure water, the formation induction times of multi-component gas hydrates in the mine water samples collected from Qilian Mountain permafrost area were relatively short, suggesting that the low salinity mine water samples have no obvious inhibition on the hydrate formation processes. The induction time of multi-component gas hydrates formation in the Qilian Mountain cores was shorter and the hydration rate was faster than those in solution systems. It is obvious that, the formation processes of multi-component gas hydrates in the Qilian Mountain media shows a feature of "interface priority ". The fracture surfaces of Qilian Mountain cores and the suspended particles in the mine water samples provide the "third interfaces" besides the gas-liquid interfaces and the vessel wall for the hydration reactions, which effectively accelerate the formation processes of multi-component gas hydrates.

  • 加载中
  • [1] 张炜,邵明娟,姜重昕,等. 世界天然气水合物钻探历程与试采进展[J]. 海洋地质与第四纪地质,2018,38(5):1-13.

    Google Scholar

    [2] 沙志彬,许振强,王平康,等. 世界天然气水合物研究发展对我国加快推进其产业化的启示[J]. 海洋地质前沿,2019,35(8):1-10.

    Google Scholar

    [3] 陈强,胡高伟,李彦龙,等. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿,2020,36(9):44-55.

    Google Scholar

    [4] 蔡峰,吴能友,闫桂京,等. 海洋浅表层天然气水合物成藏特征[J]. 海洋地质前沿,2020,36(9):73-78.

    Google Scholar

    [5] LI J F,YE J L,QIN X W,et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology,2018,1(1):5-16. doi: 10.31035/cg2018003

    CrossRef Google Scholar

    [6] 叶建良,秦绪文,谢文卫,等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质,2020,47(3):557-568. doi: 10.12029/gc20200301

    CrossRef Google Scholar

    [7] 何家雄,钟灿鸣,姚永坚,等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿,2020,36(12):1-14.

    Google Scholar

    [8] 王平康,祝有海,卢振权,等. 青海祁连山冻土区天然气水合物研究进展综述[J]. 中国科学:物理学 力学 天文学,2019,49(3):034606.

    Google Scholar

    [9] 祝有海. 陆域天然气水合物资源勘查与试采取得系列成果[J]. 中国地质调查成果快讯,2017,3(63/64):1-5.

    Google Scholar

    [10] 王平康,祝有海,卢振权,等. 祁连山冻土区天然气水合物岩性和分布特征[J]. 地质通报,2011,30(12):1839-1850. doi: 10.3969/j.issn.1671-2552.2011.12.005

    CrossRef Google Scholar

    [11] LIU C L,MENG Q G,HE X L,et al. Comparison of the characteristics for natural gas hydrate recovered from marine and terrestrial areas in China[J]. Journal of Geochemical Exploration,2015,152:67-74. doi: 10.1016/j.gexplo.2015.02.002

    CrossRef Google Scholar

    [12] 孟庆国,刘昌岭,李承峰,等. 青海聚乎更钻探区天然气水合物拉曼光谱特征[J]. 现代地质,2015,29(5):1180-1188. doi: 10.3969/j.issn.1000-8527.2015.05.022

    CrossRef Google Scholar

    [13] 孟庆国,刘昌岭,贺行良,等. 祁连山冻土区天然气水合物激光拉曼光谱特征[J]. 地质通报,2011,30(12):1863-1867. doi: 10.3969/j.issn.1671-2552.2011.12.008

    CrossRef Google Scholar

    [14] 贺行良,刘昌岭,孟庆国,等. 青海聚乎更钻探区含水合物岩芯气体组成及其指示意义[J]. 现代地质,2015,29(5):1194-1200. doi: 10.3969/j.issn.1000-8527.2015.05.024

    CrossRef Google Scholar

    [15] 黄霞,祝有海,王平康,等. 祁连山冻土区天然气水合物烃类气体组分的特征和成因[J]. 地质通报,2011,30(12):1851-1856. doi: 10.3969/j.issn.1671-2552.2011.12.006

    CrossRef Google Scholar

    [16] 苏凯,张国彪,孙友宏,等. 冻土区裂隙性地层中水合物形成机理及相态研究[J]. 石油钻探技术,2016,44(2):93-98. doi: 10.11911/syztjs.201602016

    CrossRef Google Scholar

    [17] 田苗. 多元气体水合物生成与分解过程研究[D]. 青岛: 青岛大学, 2018.

    Google Scholar

    [18] 孟庆国. 多组分气体水合物结构特征及生成分解过程研究[D]. 北京: 中国地质科学院, 2019.

    Google Scholar

    [19] KASHCHIEV D,FIROOZABADI A. Induction time in crystallization of gas hydrates[J]. Journal of Crystal Growth,2003,250(3):499-515.

    Google Scholar

    [20] 潘云仙,刘道平,黄文件,等. 气水合物形成时的诱导时间定义辨析[J]. 上海理工大学学报,2006,28(1):1-4. doi: 10.3969/j.issn.1007-6735.2006.01.001

    CrossRef Google Scholar

    [21] 张保勇,刘金华,周泓吉. 瓦斯水合物诱导时间影响因素实验研究[J]. 黑龙江科技大学学报,2016,26(2):122-127. doi: 10.3969/j.issn.2095-7262.2016.02.002

    CrossRef Google Scholar

    [22] 王新. 甲烷水合物在含动力学抑制剂体系中的生成动力学研究[D]. 杭州: 浙江工业大学, 2004.

    Google Scholar

    [23] SKOVBORG P,NG H J,RASMUSSEN P,et al. Measurement of induction times for the formation of methane and ethane gas hydrates[J]. Chemical Engineering Science,1993,48(3):445-453. doi: 10.1016/0009-2509(93)80299-6

    CrossRef Google Scholar

    [24] SLOAN E D. Clathrate hydrates of natural gases, Second Edition[M]. New York: Marcel Dekker, 1998.

    Google Scholar

    [25] 唐翠萍,戴兴学,杜建伟,等. 含低剂量抑制剂体系气体水合物生成动力学[J]. 中国科学:化学,2011,41(1):145-151.

    Google Scholar

    [26] WU Q,ZHANG B Y. Memory effect on the pressure-temperature condition and induction time of gas hydrate nucleation[J]. Journal of Natural Gas Chemistry,2010,19(4):446-451. doi: 10.1016/S1003-9953(09)60086-4

    CrossRef Google Scholar

    [27] KE W,SVARTAAS T M,CHEN D Y. A review of gas hydrate nucleation theories and growth models[J]. Journal of Natural Gas Science and Engineering,2019,61:169-196. doi: 10.1016/j.jngse.2018.10.021

    CrossRef Google Scholar

    [28] METAXAS P J,Lim V W S,Booth C,et al. Gas hydrate formation probability distributions:induction times, rates of nucleation and growth[J]. Fuel,2019,252:448-457. doi: 10.1016/j.fuel.2019.04.131

    CrossRef Google Scholar

    [29] RENAULT-CRISPO J S,SERVIO P. Role of induction time on carbon dioxide and methane gas hydrate kinetics[J]. Journal of Natural Gas Science and Engineering,2017,43:81-89. doi: 10.1016/j.jngse.2017.03.030

    CrossRef Google Scholar

    [30] 王树立,黄俊尧,闫朔,等. 基于化学亲和力模型的水合物生成动力学[J]. 化工进展,2020,39(3):966-974.

    Google Scholar

    [31] SUN Y H,JIANG S H,LI S L,et al. Growth kinetics of hydrate formation from water-hydrocarbon system[J]. Chinese Journal of Chemical Engineering,2019,27(9):2164-2179. doi: 10.1016/j.cjche.2019.03.022

    CrossRef Google Scholar

    [32] KINI R A,DEC S F,SLOAN E D. Methane + propane structure II hydrate formation kinetics[J]. Journal of Physical Chemistry A,2004,108(44):9550-9556. doi: 10.1021/jp040301l

    CrossRef Google Scholar

    [33] MAEDA N. Nucleation Curves of Methane-propane mixed gas hydrates in hydrocarbon oil[J]. Chemical Engineering Science,2016,155:1-9. doi: 10.1016/j.ces.2016.07.047

    CrossRef Google Scholar

    [34] MAEDA N. Nucleation curves of methane-propane mixed gas hydrates in the presence of a stainless steel wall[J]. Fluid Phase Equilibria,2016,413:142-147. doi: 10.1016/j.fluid.2015.12.011

    CrossRef Google Scholar

    [35] KLAPPROTH A,PILTZ R O,KENNEDY S,et al. Kinetics of sII, and mixed sI/sII, gas-hydrate growth for a methane/propane mixture using Neutron diffraction[J]. The Journal of Physical Chemistry C,2019,123(5):2703-2715. doi: 10.1021/acs.jpcc.8b06693

    CrossRef Google Scholar

    [36] BABAKHANI S M,BOUILLOT B,DOUZET J,et al. A new approach of studying mixed gas hydrates involving propane at non-equilibrium conditions and final state:an experimental study and modeling[J]. Chemical Engineering Science,2018,179:150-160. doi: 10.1016/j.ces.2018.01.017

    CrossRef Google Scholar

    [37] BABAKHANI S M,BOUILLOT B,Douzet J,et al. PVTx measurements of mixed clathrate hydrates in batch conditions under different crystallization rates:influence on equilibrium [J]. Journal of Chemical Thermodynamics,2018,122:73-84. doi: 10.1016/j.jct.2018.03.006

    CrossRef Google Scholar

    [38] 李智峰,张强,吴强,等. 驱动力对瓦斯气体水合物成核诱导时间的影响[J]. 黑龙江科技大学学报,2013,23(4):329-332. doi: 10.3969/j.issn.1671-0118.2013.04.003

    CrossRef Google Scholar

    [39] 吴强,朱玉梅,张保勇. 低浓度瓦斯气体水合分离过程中十二烷基硫酸钠和高岭土的影响[J]. 化工学报,2009,60(5):1193-1198. doi: 10.3321/j.issn:0438-1157.2009.05.020

    CrossRef Google Scholar

    [40] 张强,吴强,张保勇,等. NaCl-SDS复合溶液中多组分瓦斯水合物成核动力学机理[J]. 煤炭学报,2015,40(10):2430-2436.

    Google Scholar

    [41] 张保勇,周莉红,刘昌岭,等. 不同粒度沉积物介质对气体水合物成核的影响[J]. 天然气工业,2018,38(5):148-155. doi: 10.3787/j.issn.1000-0976.2018.05.018

    CrossRef Google Scholar

    [42] ZHANG B Y,ZHOU L H,LIU C L,et al. Influence of sediment media with different particle sizes on the nucleation of gas hydrate[J]. Natural Gas Industry B,2018,5(6):652-659. doi: 10.1016/j.ngib.2018.11.001

    CrossRef Google Scholar

    [43] 王平康,祝有海,卢振权,等. 祁连山冻土区天然气水合物现场识别方法[J]. 矿床地质,2013,32(5):1045-1056. doi: 10.3969/j.issn.0258-7106.2013.05.016

    CrossRef Google Scholar

    [44] 刘庭崧,刘妮,陈利涛,等. CH4水合物生长速率影响因素的分子动力学模拟[J]. 原子与分子物理学报,2020,37(5):778-782.

    Google Scholar

    [45] LOUIS Y,THOMAS C,ZACHARY A,et al. Hydrate growth on methane gas bubbles in the presence of salt[J]. Langmuir,2020,36(1):84-95. doi: 10.1021/acs.langmuir.9b03451

    CrossRef Google Scholar

    [46] HOLZAMMER C C,BRAEUER A. Raman spectroscopic study of the effect of aqueous salt solutions on the inhibition of carbon dioxide gas hydrates[J]. Journal of Physical Chemistry B,2019,123(10):2354-2361. doi: 10.1021/acs.jpcb.8b11040

    CrossRef Google Scholar

    [47] TAO Y Q,YAN K F,LI X S,et al. Effects of salinity on formation behavior of methane hydrate in montmorillonite[J]. Energies,2020,13(1):1-15.

    Google Scholar

    [48] 孙始财. 天然气水合物安全开采基础研究[D]. 青岛: 山东科技大学, 2011.

    Google Scholar

    [49] STERN L A,KIRBY S H,DURHAM W B. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice[J]. Science,1996,273(5283):1843-1848. doi: 10.1126/science.273.5283.1843

    CrossRef Google Scholar

    [50] TAYLOR C J,MILLER K T,KOH C A. Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface[J]. Chemical Engineering Science,2007,62(23):6524-6533. doi: 10.1016/j.ces.2007.07.038

    CrossRef Google Scholar

    [51] 张保勇,程远平. 不同驱动力下瓦斯气体水合物的诱导时间分布[J]. 黑龙江科技大学学报,2014,24(1):43-47. doi: 10.3969/j.issn.2095-7262.2014.01.010

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(1276) PDF downloads(16) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint