2021 Vol. 37, No. 10
Article Contents

YANG Xipu, ZHANG Dong, CHEN Xiao, SONG Laiming, LI Mengcheng, LIU Fei, FENG Xiaofei. PREDICTION OF SAND BODIES IN DEEP-WATER CHANNEL TURBIDITE RESERVOIR WITH SEISMIC ATTRIBUTES[J]. Marine Geology Frontiers, 2021, 37(10): 70-77. doi: 10.16028/j.1009-2722.2021.093
Citation: YANG Xipu, ZHANG Dong, CHEN Xiao, SONG Laiming, LI Mengcheng, LIU Fei, FENG Xiaofei. PREDICTION OF SAND BODIES IN DEEP-WATER CHANNEL TURBIDITE RESERVOIR WITH SEISMIC ATTRIBUTES[J]. Marine Geology Frontiers, 2021, 37(10): 70-77. doi: 10.16028/j.1009-2722.2021.093

PREDICTION OF SAND BODIES IN DEEP-WATER CHANNEL TURBIDITE RESERVOIR WITH SEISMIC ATTRIBUTES

More Information
  • Deep-water channel sand bodies are good reservoir for oil and gas accumulation. However, the prediction of such a reservoir is difficult since usually no sufficient wells are available offshore. Following the geological characteristics of deep-water channels, this paper constructed some models for different types of channels and proposed some sand body superposition patterns at the well point using forward model analysis, the seismic response characteristics and sensitive seismic attributes as tools. Cluster analysis and probabilistic neural network (PNN) prediction are carried out based on sensitive seismic attributes. The X reservoir in West Africa is selected as a case for application, and the coincidence rate of the prediction results reached as high as 87.5%, which is efficient enough to predict the sand body distribution pattern for oil and gas exploration. Combined with the integrated study of seismic sedimentology, it is concluded that the sand bodies in the target layer are mainly distributed in the middle of the channel but few in both ends under the control of the sedimentary environment and the change in flow regime in the curved part of channel.

  • 加载中
  • [1] 赵晓明,葛家旺,谭程鹏,等. 深海水道储层构型及其对同沉积构造响应机理的研究现状与展望[J]. 中国海上油气,2019,31(5):76-87.

    Google Scholar

    [2] ROYA,MATOS M,MARFURT K J. Automatic seismic facies classification with Kohonen Self organizing maps:a tutorial[J]. Geohorizons Journal of Society of Petroleum Geophysicists,2010,10(1):6-14.

    Google Scholar

    [3] 梁平. 地震属性优化技术及BP小波神经网络储层参数预测的初步研究[D]. 成都: 成都理工大学, 2009.

    Google Scholar

    [4] MUTTI E,NORMARK W R. Comparing examples of modern and ancient turbidite systems:problems and concepts[J]. Marine Clastic Sedimentology:Concepts and Case Studies,1987:1-38.

    Google Scholar

    [5] 林煜,吴胜和,王星,等. 深水浊积水道体系构型样式研究:以西非尼日尔三角洲盆地某深水研究区为例[J]. 地质论评,2013,59(3):510-520. doi: 10.3969/j.issn.0371-5736.2013.03.011

    CrossRef Google Scholar

    [6] 赵晓明,吴胜和,刘丽. 尼日尔三角洲盆地Akpo油田新近系深水浊积水道储层构型表征[J]. 石油学报,2012,33(6):1049-1058. doi: 10.7623/syxb201206018

    CrossRef Google Scholar

    [7] 谢清惠,邓宏文,郭佳. 西非下刚果盆地深水曲流水道的地震响应特征与演化模式分析[J]. 石油物探,2013(6):655-661.

    Google Scholar

    [8] 于水,程涛,陈莹. 尼日尔三角洲盆地深水沉积体系特征[J]. 地球科学:中国地质大学学报,2012,37(4):763-770.

    Google Scholar

    [9] 吕明,王颖,陈莹. 尼日利亚深水区海底扇沉积模式成因探讨及勘探意义[J]. 中国海上油气,2008,20(4):275-282. doi: 10.3969/j.issn.1673-1506.2008.04.016

    CrossRef Google Scholar

    [10] NYANTAKYI E K,LI T,HU W S,et al. Structural and stratigraphic characteristics on distal parts of the outer fold and thrust belt of southern Niger Delta,Nigeria[J]. Arabian Journal of Geosciences,2015,8(9):6677-6695. doi: 10.1007/s12517-014-1727-x

    CrossRef Google Scholar

    [11] 冯鑫,韩文明,范洪耀. 西非深水目标高密度三维地震勘探效果[J]. 石油物探,2020,59(1):150-157. doi: 10.3969/j.issn.1000-1441.2020.01.017

    CrossRef Google Scholar

    [12] 关达,张秀容. 利用地震属性预测河道砂体[J]. 石油物探,2004(S1):56-58.

    Google Scholar

    [13] 丁峰,胡光义,尹成,等. 基于地质信息约束的概率神经网络地震反射模式预测方法[J]. 中国海上油气,2018,30(1):127-131.

    Google Scholar

    [14] 冯潇飞,赵晓明,谭程鹏,等. 深海弯曲水道内部一种特殊的沉积单元:凹岸坝[J]. 沉积学报,2020,38(2):440-450.

    Google Scholar

    [15] 穆星. 利用地震几何属性和自组织神经网络进行地震相的自动识别[J]. 地质科技情报,2005(3):109-112. doi: 10.3969/j.issn.1000-7849.2005.03.022

    CrossRef Google Scholar

    [16] 吕慧, 鲍典, 王震, 等. 基于地震多属性的岩溶古河道识别及刻画[C]//SPG/SEG南京2020年国际地球物理会议论文集. 北京: 石油地球物理勘探编辑部, 2020: 816-819.

    Google Scholar

    [17] 丁峰,尹成,朱振宇,等. 利用改进的自组织网络进行地震属性分析[J]. 西南石油大学学报(自然科学版),2009,31(4):47-51,200.

    Google Scholar

    [18] 杜红斌,郭巧占. 概率神经网络及其在储层产能预测中的应用[J]. 石油仪器,2005(4):54-56,91.

    Google Scholar

    [19] 罗浩然,尹成,丁峰,等. 概率神经网络的平滑参数分析及在地震属性分析中的应用[J]. 石油物探,2017,56(4):551-558. doi: 10.3969/j.issn.1000-1441.2017.04.011

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(1659) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint