2021 Vol. 37, No. 10
Article Contents

CHEN Qiang, LIU Kun, LIANG Yu, SUN Jianye, LI Yanlong, WU Nengyou, LIU Changling. DEVELOPMENT OF CH4-CO2 OPTICAL FIBER GAS SENSOR MONITORING INSTRUMENT FOR NATURAL GAS HYDRATE PRODUCTION WELL[J]. Marine Geology Frontiers, 2021, 37(10): 78-84. doi: 10.16028/j.1009-2722.2020.178
Citation: CHEN Qiang, LIU Kun, LIANG Yu, SUN Jianye, LI Yanlong, WU Nengyou, LIU Changling. DEVELOPMENT OF CH4-CO2 OPTICAL FIBER GAS SENSOR MONITORING INSTRUMENT FOR NATURAL GAS HYDRATE PRODUCTION WELL[J]. Marine Geology Frontiers, 2021, 37(10): 78-84. doi: 10.16028/j.1009-2722.2020.178

DEVELOPMENT OF CH4-CO2 OPTICAL FIBER GAS SENSOR MONITORING INSTRUMENT FOR NATURAL GAS HYDRATE PRODUCTION WELL

More Information
  • The development of natural gas hydrate has attracted great attention from all over the world. Japan, China and some other countries have successfully implemented the trial production at sea, which further confirmed the resource potential and development feasibility of gas hydrate. However, the monitoring methods for gas composition in production well are far from perfect up to date, which restricts the production process evaluation and risk prediction. Based on the principles of TDLAS, a set of gas composition sensing and monitoring system for methane and carbon dioxide is designed, and the miniaturization and anti-interference improvement are realized according to the gas hydrate production well conditions. It is verified that the developed optical fiber gas composition monitoring instrument is effective and stable for measurement of CH4 with concentration above 50×10−6 and CO2 with concentration above 100×10−6.

  • 加载中
  • [1] BOSWELL R,MARSTELLER S,OKINAKA N,et al. Viable long-term gas hydrate testing site confirmed on the Alaska North Slope[J]. Fire in the Ice,2019,19(1):1-22.

    Google Scholar

    [2] 申志聪,王栋,贾永刚. 水合物直井与水平井产气效果分析:以神狐海域SH2站位为例[J]. 海洋工程,2019,37(4):107-116.

    Google Scholar

    [3] 杜卫刚. 天然气水合物试采技术[J]. 油气井测试,2019,28(1):20-24.

    Google Scholar

    [4] 孙小辉,孙宝江,王志远,等. 超临界CO2钻井井筒水合物形成区域预测[J]. 石油钻探技术,2015,43(6):13-19.

    Google Scholar

    [5] 黄芳飞,张旗,何涛,等. 海域天然气实物监测井技术进展与挑战[J]. 科学技术与工程,2019,19(27):21-30. doi: 10.3969/j.issn.1671-1815.2019.27.003

    CrossRef Google Scholar

    [6] 何涛,卢海龙,林进清,等. 海域天然气水合物开发的地球物理监测[J]. 地学前缘,2017,24(5):368-382.

    Google Scholar

    [7] WILSON A. System monitors sandface for deepwater offshore gas hydrate production[J]. Journal of Petroleum Technology,2014,66(9):102-105. doi: 10.2118/0914-0102-JPT

    CrossRef Google Scholar

    [8] 丁莹莹,何泽新,李世念,等. 光纤传感监测技术在工程地质领域中的应用研究进展[J]. 矿产勘查,2019,10(8):2078-2085. doi: 10.3969/j.issn.1674-7801.2019.08.044

    CrossRef Google Scholar

    [9] 庞洪晨,崔记芳,王安琪. 光纤监测技术在天然气管道清管跟踪中的应用[J]. 石化技术,2019,26(11):358-338. doi: 10.3969/j.issn.1006-0235.2019.11.222

    CrossRef Google Scholar

    [10] 刘杰,董洋,古明思,等. 基于TDLAS技术的吸入便携式甲烷探测仪研制[J]. 量子电子学报,2019,36(5):521-527.

    Google Scholar

    [11] 李奥奇,王彪,许玥,等. 用于CH4气体TDLAS检测系统的信号发生电路研制[J]. 激光杂志,2019,40(12):6-9.

    Google Scholar

    [12] 曹榕,康信文,傅鸣,等. 基于TDLAS技术气体浓度测量的快速拟合方法[J]. 传感技术学报,2020,33(2):232-237. doi: 10.3969/j.issn.1004-1699.2020.02.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views(654) PDF downloads(200) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint