2021 Vol. 37, No. 5
Article Contents

FAN Shuimiao, JIN Bingfu, WANG Xi, YU Haiyang. MICA SHAPE FACTOR AND ITS EQUIVALENT SEDIMENTATION IN THE SEDIMENTS OF THE YELLOW RIVER ESTUARY[J]. Marine Geology Frontiers, 2021, 37(5): 31-38. doi: 10.16028/j.1009-2722.2020.175
Citation: FAN Shuimiao, JIN Bingfu, WANG Xi, YU Haiyang. MICA SHAPE FACTOR AND ITS EQUIVALENT SEDIMENTATION IN THE SEDIMENTS OF THE YELLOW RIVER ESTUARY[J]. Marine Geology Frontiers, 2021, 37(5): 31-38. doi: 10.16028/j.1009-2722.2020.175

MICA SHAPE FACTOR AND ITS EQUIVALENT SEDIMENTATION IN THE SEDIMENTS OF THE YELLOW RIVER ESTUARY

More Information
  • Mica has a unique sheet-like structure and crystal form. In order to study the hydraulic difference between mica and other granular detrital minerals, light and heavy minerals were identified for the sediments of different size taken from the Yellow River Estuary. Muscovite and the biotite with different weathering degree were selected as research objects. The particle size and thickness of about 12 000 detrital mica from 5 samples were measured to study the equivalent size for sheet-like mica and granular feldspar and quartz in water. The results show that the content of mica in the Yellow River sediments is about 1.8%~9.7% in general, which vary greatly between different samples and different grain size grades and the content of mica decreases sharply from high to low around the grain size of 1.5Φ~5.5Φ. The thickness of mica is mostly less than 20 μm with an average of 8.93 μm. Muscovite is generally thinner than biotite. The volume of sheet shaped mica is approximately 16% to 55% of granular minerals, which is much smaller than those of feldspar and quartz. The volume change of mica can be described with shape factor and the diameter-thickness ratio, which varies between 5~60. According to the Corey and Stokes law, for mica and granular minerals such as feldspar and quartz, the sedimentation rate of mica is only 0.12%~0.33% of that for feldspar and quartz if they are the same in grain size. If the sedimentation rates are same for the two kinds of sediments, the grain size distribution of mica is wider than that of feldspar and quartz, with a difference of about 1.0Φ~1.5Φ. Therefore, the hydraulic behavior of sheet-like mica and granular feldspar and quartz are obviously different in the process of transportation and deposition. Equivalent deposition often makes large-particles of mica deposited together with fine-grained muddy deposits.

  • 加载中
  • [1] 李玉中. 沉积分异作用与河口海洋沉积[J]. 地质学刊,2014,38(4):556-560. doi: 10.3969/j.issn.1674-3636.2014.04.556

    CrossRef Google Scholar

    [2] COLLINS M B,GAO S. Analysis of grain size trends,for defining sediment transport pathways in marine environments[J]. Journal of Coastal Research,1994,10(1):61-70.

    Google Scholar

    [3] 任韧希子,陈沈良. 黄河下游至三角洲滨海区表层沉积物分异特征和规律[J]. 海洋科学进展,2010,28(1):24-31. doi: 10.3969/j.issn.1671-6647.2010.01.004

    CrossRef Google Scholar

    [4] 邓程文,张霞,林春明,等. 长江河口区末次冰期以来沉积物的粒度特征及水动力条件[J]. 海洋地质与第四纪地质,2016,36(6):185-198.

    Google Scholar

    [5] 丛静艺,袁忠鹏,胡刚,等. 长江远端三角洲多源沉积分异作用及其动力机制[J]. 沉积学报,2020,38(3):528-537.

    Google Scholar

    [6] 刘宝珺. 沉积岩石学[M]. 北京: 地质出版社, 1980: 31-40.

    Google Scholar

    [7] 张连杰,胡日军,朱龙海,等. 文登近岸海域重矿物组合分布及对沉积动力环境的指示[J]. 海洋地质与第四纪地质,2018,38(1):127-138.

    Google Scholar

    [8] DOYLE L J,CLEAEY W J,PILKEY O H. Mica:Its use in determining shelf-depositional regimes[J]. Marine Geology,1968,6:381-389. doi: 10.1016/0025-3227(68)90002-9

    CrossRef Google Scholar

    [9] 张富元,王秀昌. 东海表层沉积物中重矿物聚类分析及其动力分布特征[J]. 台湾海峡,1984,3(1):68-77.

    Google Scholar

    [10] 王中波,杨守业,李日辉,等. 黄河水系沉积物碎屑矿物组成及沉积动力环境约束[J]. 海洋地质与第四纪地质,2010,30(4):73-85.

    Google Scholar

    [11] 于炳松, 梅冥相. 沉积岩岩石学[M]. 武汉: 中国地质大学出版社, 2016: 120-126.

    Google Scholar

    [12] 潘兆橹. 结晶学及矿物学下 第3版[M]. 北京: 地质出版社, 1994: 169-196.

    Google Scholar

    [13] 方霖,郭珍旭,刘长淼,等. 云母矿物浮选研究进展[J]. 中国矿业,2015,24(3):131-136. doi: 10.3969/j.issn.1004-4051.2015.03.029

    CrossRef Google Scholar

    [14] 林晓彤,李巍然,时振波. 黄河物源碎屑沉积物的重矿物特征[J]. 海洋地质与第四纪地质,2003,23(3):17-21.

    Google Scholar

    [15] JIN B F,WANG M Y,YUE W,et al. Heavy mineral variability in the Yellow River sediments as determined by the multiple-window strategy[J]. Minerals,2019,9(2):85-90. doi: 10.3390/min9020085

    CrossRef Google Scholar

    [16] TIANA S,LIB Z,WANGC Z,et al. Mineral composition and particle size distribution of river sediment and loess in the middle and lower Yellow River[J]. International Journal of Sediment Research,2020,36(3):392-400.

    Google Scholar

    [17] 卫晓锋, 潘东,阴元军等. 新疆阿克塔斯金矿床黑云母花岗岩锆石U-Pb和绢云母39Ar/40Ar测年及地质意义[J]. 矿床地质,2019,38(2):251-260.

    Google Scholar

    [18] 曾广策. 晶体光学及光性矿物学, 第3版[M]. 武汉: 中国地质大学出版社, 2017, 208-211.

    Google Scholar

    [19] 白翠萍. 云母粉径厚比测定方法研究[D]. 武汉: 武汉理工大学, 2008: 6-10.

    Google Scholar

    [20] 乔志川,刘迪,刘钦甫. 层状矿物径厚比自动测算研究[J]. 煤炭技术,2017(5):306-308.

    Google Scholar

    [21] TAO S,EGLINTON T I,MONTLUON D B,et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load:regional significance and global relevance[J]. Earth and Planetary Science Letters,2015,414(1):77-86.

    Google Scholar

    [22] 水利部黄河水利委员会. 黄河年鉴[M]. 郑州: 黄河年鉴社, 2019: 5-9.

    Google Scholar

    [23] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985: 14-44.

    Google Scholar

    [24] GAO P,DENG J,CHAI X,et al. Dynamic sediment discharge in the Hekou-Longmen region of Yellow River and soil and water conservation implications[J]. Science of the Total Environment,2017,578:56-66. doi: 10.1016/j.scitotenv.2016.06.128

    CrossRef Google Scholar

    [25] MIKHAILOV V,MIKHAIOVA M. Natural and anthropogenic long-term variations of water runoff and suspended sediment load in the Huanghe River[J]. Water Resources,2017,44(6):793-807. doi: 10.1134/S0097807817060057

    CrossRef Google Scholar

    [26] 王臻,陈振宇,李建康,等. 云母矿物对仁里稀有金属伟晶岩矿床岩浆-热液演化过程的指示[J]. 矿床地质,2019,38(5):1039-1052.

    Google Scholar

    [27] 陈丽蓉. 渤海、黄海、东海沉积物中矿物组合的研究[J]. 海洋科学,1989,13(2):1-8.

    Google Scholar

    [28] LIU J,SAITO Y,WANG H,et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology,2007,236(3/4):165-187. doi: 10.1016/j.margeo.2006.10.031

    CrossRef Google Scholar

    [29] 张尧,韩宗珠,艾丽娜,等. 黄海全新世泥质体表层沉积物重矿物特征及其指示意义[J]. 中国海洋大学学报(自然科学版),2018,48(11):108-118.

    Google Scholar

    [30] 胡邦琦,李军,李国刚,等. 长江和黄河入海沉积物的物源识别研究进展[J]. 海洋地质与第四纪地质,2011,31(6):147-156.

    Google Scholar

    [31] 秦亚超,李日辉,姜学钧. 黄海中北部和渤海东部表层沉积物轻矿物特征及其指示意义[J]. 第四纪研究,2014,34(3):611-622. doi: 10.3969/j.issn.1001-7410.2014.03.15

    CrossRef Google Scholar

    [32] 张茂根,翁志学. 颗粒统计平均粒径及其分布的表征[J]. 高分子材料科学与工程,2000,16(5):1-4. doi: 10.3321/j.issn:1000-7555.2000.05.001

    CrossRef Google Scholar

    [33] 白玉川. 河口泥沙运动力学[M]. 天津: 天津大学出版社, 2011: 9-20.

    Google Scholar

    [34] 马在平,姜在兴. 我国热带亚热带部分地区花岗岩和片麻岩中黑云母风化研究[J]. 矿物岩石,1996,16(2):17-24.

    Google Scholar

    [35] 王彦华,罗立峰. 花岗岩中黑云母风化的矿物变化机制[J]. 地球化学,1999,28(3):239-247.

    Google Scholar

    [36] 王学潮, 向宏发. 聊城-兰考断裂综合研究及黄河下游河道稳定性分析[M]. 郑州: 黄河水利出版社, 2001: 94-105.

    Google Scholar

    [37] 陆凯,秦亚超,王中波,等. 东海中南部海域表层沉积物碎屑重矿物组合分区及其物源分析[J]. 海洋地质前沿,2019, 35(8):20-26.

    Google Scholar

    [38] 张连杰,胡日军,朱龙海,等. 渤海湾碎屑矿物特征及其物源和沉积动力环境指示意义[J]. 中国海洋大学学报(自然科学版),2019,49(5):60-70.

    Google Scholar

    [39] COREY A T. Influence of the shape on the fall velocity of sand grains[M]. Colorado: Colorado State University, 1949: 10-30.

    Google Scholar

    [40] KOMAR P D,REIMERS C E. Grain Shape Effects on Settling Rates[J]. The Journal of Geology,1978,86:193-209. doi: 10.1086/649674

    CrossRef Google Scholar

    [41] 魏德洲. 固体物料分选学[M]. 北京: 冶金工业出版社, 2015: 201-217.

    Google Scholar

    [42] 袁竹林, 朱立平, 耿凡. 气固两相流动与数值模拟[M]. 南京: 东南大学出版社, 2013: 23-27.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(2085) PDF downloads(238) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint