2021 Vol. 37, No. 11
Article Contents

WAN Tinghui, WANG Jingli, SHA Zhibin, HE Huice, LI Zhanzhao, YU Yanjiang, LIANG Qianyong, HUANG Ning. TOUGH+MULTILATERAL WELL MODEL CONSTRUCTION BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE[J]. Marine Geology Frontiers, 2021, 37(11): 60-69. doi: 10.16028/j.1009-2722.2020.166
Citation: WAN Tinghui, WANG Jingli, SHA Zhibin, HE Huice, LI Zhanzhao, YU Yanjiang, LIANG Qianyong, HUANG Ning. TOUGH+MULTILATERAL WELL MODEL CONSTRUCTION BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE[J]. Marine Geology Frontiers, 2021, 37(11): 60-69. doi: 10.16028/j.1009-2722.2020.166

TOUGH+MULTILATERAL WELL MODEL CONSTRUCTION BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE

More Information
  • Natural gas hydrates are widely distributed and shallowly buried in the ocean. It is clean, pollution-free, and huge in reserves. As a clean energy source, it has great development potential in the future. In order to conduct the commercial exploitation of natural gas hydrate, it is necessary to explore the efficient gas hydrate exploitation technology based on multilateral wells. In the process to use the TOUGH+HYDRATE simulator to make numerical simulation, the complex structure well modeling is the difficulty. In this paper, we proposed a fast modeling method for complex structure well based on mVIEW. Taking the multilateral well as an example, the modeling process is briefly introduced in this paper. In addition, combined with the TOUGH+HYDRATE simulator, based on the logging curve data from the testing well of SHSC-4 operated by the China Geological Survey in 2017 in the Shenhu area of the Baiyun Sag in the deep water area of the northern South China Sea, an ideal layered geological model is established for hydrate reservoirs. Single horizontal well and multilateral well numerical simulation for depressurized production in the central part of the Hydrate Layer II is conducted. The simulation results show that: The modeling method has improved the simulator's ability in complex modeling and has good effect and reference significance for the numerical simulation research work for highly efficient gas hydrate production; Compared with single well depressurization production, multilateral well technology can maximize the exposed area and depth of gas hydrate reservoirs, and effectively increase the degree of production of hydrate reservoirs. It is a technical method worthy to be developed for efficient production of natural gas hydrates in the future.

  • 加载中
  • [1] MORIDIS G J, KOWALSKY M B, PRUESS K. TOUGH+HYDRATE v1.0 User's Manual: a code for the simulation of system behavior in hydrate-bearing geologic media[R]. Berkeley: LawrenceBerkeley National Laboratory, 2008.

    Google Scholar

    [2] RUTQVIS T J,MORIDIS G J. Numerical studies on the geomechanical stability of hydrate-bearing sediments[J]. SPE Journal,2009,14(2):267-282. doi: 10.2118/126129-PA

    CrossRef Google Scholar

    [3] BIRKEDAL K A,FREEMAN C M,MORIDIS G J,et al. Numerical predictions of experimentally observed methane hydrate dissociation and reformation in sandstone[J]. Energy & Fuels,2014,28(9):5573-5586.

    Google Scholar

    [4] FENG J C,LI X S,LI G,et al. Numerical investigation of hydrate dissociation performance in the South China Sea with different horizontal well configurations[J]. Energies,2014,7(8):4813-4834. doi: 10.3390/en7084813

    CrossRef Google Scholar

    [5] LI X S,YANG B,LI G,et al. Numerical simulation of gas production from natural gas hydrate using a single horizontal well by depressurization in Qilian Mountain Permafrost[J]. Industrial & Engineering Chemistry Research,2012,51(11):4424-4432.

    Google Scholar

    [6] 苏正,吴能友,张可霓. 南海北部陆坡神狐天然气水合物开发潜力[J]. 海洋地质前沿,2011,27(6):16-23.

    Google Scholar

    [7] 李淑霞,刘佳丽,武迪迪,等. 神狐海域水合物藏降压开采的数值模拟[J]. 科学技术与工程,2018,18(24):38-43. doi: 10.3969/j.issn.1671-1815.2018.24.006

    CrossRef Google Scholar

    [8] 李刚,李小森,ZHANG K N,等. 水平井开采南海神狐海域天然气水合物数值模拟[J]. 地球物理学报,2011,54(9):2325-2337. doi: 10.3969/j.issn.0001-5733.2011.09.016

    CrossRef Google Scholar

    [9] 李刚,李小森. 单井热吞吐开采南海神狐海域天然气水合物数值模拟[J]. 化工学报,2011,62(2):458-468.

    Google Scholar

    [10] LI Y L,WAN Y Z,CHEN Q,et al. Large borehole with multi-lateral branches:A novel solution for exploitation of clayey silt hydrate[J]. China Geology,2019,2(3):333-341.

    Google Scholar

    [11] 苑珊珊,刘启国,熊景明. 多分支井技术发展综述[J]. 国外油田工程,2010,26(12):42-44,47.

    Google Scholar

    [12] 沈忠厚,黄洪春,高德利. 世界钻井技术新进展及发展趋势分析[J]. 中国石油大学学报(自然科学版),2009,33(4):64-70.

    Google Scholar

    [13] 王光颖. 多分支井钻井技术综述与最新进展[J]. 海洋石油,2006(3):100-104. doi: 10.3969/j.issn.1008-2336.2006.03.022

    CrossRef Google Scholar

    [14] 张立平,纪哲峰,付广群. 多分支井的技术展望[J]. 国外油田工程,2001(11):36-37.

    Google Scholar

    [15] 万庭辉, 李占钊, AVIS J, 等. 天然气水合物开采数值模拟中基于mVIEW的水平井井眼轨迹建模[J]. 海洋地质前沿,2020,36(8):74-80.

    Google Scholar

    [16] WU N, YANG S, ZHANG H, et al. Gas Hydrate System of Shenhu Area, Northern South China Sea: Wire-line Logging, Geochemical Results and Preliminary Resources Estimates[C]//Proceedings of the Annual Offshore Technology Conference, 2010.

    Google Scholar

    [17] 杨胜雄,梁金强,陆敬安,等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘,2017,24(4):1-14.

    Google Scholar

    [18] LI J F,YE J L,QIN X W,et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology,2018,1(1):5-16. doi: 10.31035/cg2018003

    CrossRef Google Scholar

    [19] MA X L,SUN Y H,LIU B C,et al. Numerical study of depressurization and hot water injection for gas hydrate production in China's first offshore test site[J]. Journal of Natural Gas Science and Engineering,2020:103530.

    Google Scholar

    [20] MORIDIS G J,KOWALSKY M B,PRUESS K. Depressurization-induced gas production from class-1 hydrate deposits[J]. Society of Petroleum Engineers Reservoir Evaluation Andengineering,2007,10(5):458-481.

    Google Scholar

    [21] SUN Y H,MA X L,GUO W,et al. Numerical simulation of the short- and long-term production behavior of the first offshore gas hydrate production test in the South China Sea[J]. Journal of Petroleum Science and Engineering,2019,181:106196. doi: 10.1016/j.petrol.2019.106196

    CrossRef Google Scholar

    [22] CHEN L,FENG Y C,OKAJIMA J,et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu,South China Sea[J]. Journal of natural gas science and engineering,2018,53:55-66. doi: 10.1016/j.jngse.2018.02.029

    CrossRef Google Scholar

    [23] SUN J X,NING F L,LIU T L,et al. Gas production from a silty hydrate reservoir in the South China Sea using hydraulic fracturing:a numerical simulation[J]. Energy ence & Engineering,2019,7(1):1106-1122.

    Google Scholar

    [24] MORIDIS G J,REAGAN M T,BOYLE K L,et al. Evaluation of the gas production potential of some particularly challenging types of oceanic hydrate deposits[J]. Transport in Porous Media,2011,90(1):269-299. doi: 10.1007/s11242-011-9762-5

    CrossRef Google Scholar

    [25] SUN J X,ZHANG L,NING F L,et al. Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea:a preliminary feasibility study[J]. Marine & Petroleum Geology,2017, 86:447-473.

    Google Scholar

    [26] YUAN Y L,XU T F,XIN X,et al. Multiphase flow behavior of layered methane hydrate reservoir induced by gas production[J]. Geofluids,2017:1-15.

    Google Scholar

    [27] SUN J X,NING F L,LI S,et al. Numerical simulation of gas production from hydrate-bearing sediments in the Shenhu area by depressurising:the effect of burden permeability[J]. Journal of Unconventional Oil and Gas Resources,2015(12):23-33.

    Google Scholar

    [28] FENG Y C,CHEN L,SUZUKI A,et al. Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method[J]. Energy Conversion And Management,2019(184):194-204.

    Google Scholar

    [29] MORIDIS G J,REAGAN M T,KIM S J,et al. Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea[J]. SPE Journal,2007,14(4):759-781.

    Google Scholar

    [30] MORIDIS G J, REAGAN M T. Strategies for gas production from oceanic class 3 hydrate accumulations[C]//Offshore Technology Conference, Houston, 2007: OTC 18865.

    Google Scholar

    [31] MORIDIS G J, REAGAN M T. Gas production from oceanic class 2 hydrate accumulations[C]//Offshore Technology Conference, Houston, 2007: OTC 18866.

    Google Scholar

    [32] MORIDIS G J, KOWALSKY M. Gas production from unconfined Class 2 hydrate accumulations in the oceanic subsurface[M]//MAX M, JOHNSON A H, DILLON W P, et al. Economic Geology of Natural Gas Hydrates. Kluwer Academic/Plenum Publishers, 2006: 249-266.

    Google Scholar

    [33] SU Z, MORIDIS G, ZHANG K, et al. Numerical investigation of gas production strategy for the hydrate deposits in the Shenhu Area[C]//Offshore Technology Conference, Houston, 2010: OTC 20551.

    Google Scholar

    [34] LI G,MORIDIS G J,ZHANG K,et al. Evaluation of gas production potential from marine gas hydrate deposits in Shenhu Area of South China Sea[J]. Energy & Fuels,2010,24(11):6018-6033.

    Google Scholar

    [35] CATHLES L M. Changes in sub-water table fluid flow at the end of the Proterozoic and its implications for gas pulsars and MVT lead-zinc deposits[J]. Geofluids. 2007, 7(2): 209-226.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(2158) PDF downloads(30) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint