2020 Vol. 36, No. 11
Article Contents

SUN Longfei, LI Huiyong, XU Peng, QIN Dehai, CUI Haizhong, TAO Li. ANALYSIS AND PREDICTION OF ABNORMAL VELOCITY IN PALEOGENE MUDSTONE OF STRUCTURE BZ19-6 IN OFFSHORE BOHAI BAY BASIN[J]. Marine Geology Frontiers, 2020, 36(11): 11-17. doi: 10.16028/j.1009-2722.2020.149
Citation: SUN Longfei, LI Huiyong, XU Peng, QIN Dehai, CUI Haizhong, TAO Li. ANALYSIS AND PREDICTION OF ABNORMAL VELOCITY IN PALEOGENE MUDSTONE OF STRUCTURE BZ19-6 IN OFFSHORE BOHAI BAY BASIN[J]. Marine Geology Frontiers, 2020, 36(11): 11-17. doi: 10.16028/j.1009-2722.2020.149

ANALYSIS AND PREDICTION OF ABNORMAL VELOCITY IN PALEOGENE MUDSTONE OF STRUCTURE BZ19-6 IN OFFSHORE BOHAI BAY BASIN

  • The structures of BZ19-6 and BZ21/22 are located in the southwest of Bozhong Depression of the Bohai Bay Basin, where commercial oil and gas have been discovered in the glutenite layers of Early Paleogene, the Archean buried hill at structure BZ19-6 and the Paleozoic buried hill at structure BZ21/22. Drilling has revealed that abnormal high pressure generally occurs in the Paleogene mudstone, with pressure coefficient changing between 1.2 and 2.0. The pressure is so high that traditional velocity prediction methods are always invalid for undrilled blocks. Accurate formation velocity prediction is critical important to depth prediction of the top boundaries of the deep glutenite layer and buried hill reservoirs, and to safe drilling. According to the forming mechanism of overpressure, it is found that the velocity abnormals in the area are mainly caused by undercompaction and hydrocarbon generation. Comparing the pressure and velocity affected by the change in undercompaction and hydrocarbon generation, it is found that as the buried depth increased to certain level, the influence of undercompaction on velocity will gradually become stable, and the change of velocity will be dominated by hydrocarbon generation process in the overpressured Paleogene mudstone. Accordingly, the quantitative relationship between velocity and influencing factors is established. Based on this method, the predicted depth of the top of buried hill is in good agreement with the actual drilling data, and the safety of drilling operation is also improved.

  • 加载中
  • [1] 李芳,周凡,李洋森,等. 高温超压地层随钻声波速度预测方法研究[J]. 海洋石油,2019,9(1):61-65. doi: 10.3969/j.issn.1008-2336.2019.01.061

    CrossRef Google Scholar

    [2] 罗运先,赵宪生,吴雄英,等. 地震波速度的纵,横向变化分析[J]. 成都理工大学学报:自然科学版,2005,32(5):525-529.

    Google Scholar

    [3] 袁全社,周家雄,李勇,等. 声波测井曲线重构技术在储层预测中的应用[J]. 中国海上油气,2009,21(1):23-26. doi: 10.3969/j.issn.1673-1506.2009.01.005

    CrossRef Google Scholar

    [4] GARDNER G H F,GARDNER L W,GREGORY A R. Formation velocity and density at the diagnostic basics for stratigraphic traps[J]. Geophysics,1974,39(6):770-780. doi: 10.1190/1.1440465

    CrossRef Google Scholar

    [5] 熊冉,高亮,杨姣,等. 曲线重构反演在储层横向预测中的应用[J]. 西南石油大学学报:自然科学版,2012,34(1):83-89. doi: 10.3863/j.issn.1674-5086.2012.01.013

    CrossRef Google Scholar

    [6] 贺懿,刘怀山,毛传龙,等. 多曲线声波重构技术在储层预测中的应用研究[J]. 石油地球物理勘探,2008,43(5):549-556. doi: 10.3321/j.issn:1000-7210.2008.05.011

    CrossRef Google Scholar

    [7] 郭永恒. 随钻测井曲线预测及更新方法研究[J]. 石油钻探技术,2010,38(6):25-28. doi: 10.3969/j.issn.1001-0890.2010.06.006

    CrossRef Google Scholar

    [8] HAN D H,NUR A,MORGAN D. Effect of porosity and caly content on wave velocities in sand stone[J]. Geophysics,1986,51(11):2093-2107. doi: 10.1190/1.1442062

    CrossRef Google Scholar

    [9] 樊洪海. 适于检测砂泥岩地层孔隙压力的综合解释方法[J]. 石油勘探与开发,2002,29(1):90-92. doi: 10.3321/j.issn:1000-0747.2002.01.023

    CrossRef Google Scholar

    [10] BOWERS G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion,1995,10(2):89-95.

    Google Scholar

    [11] RAMDHAN A M,GOULTY N R. Overpressure and mudrock compaction in the Lower Kutai Basin,Indonesia:A radical reappraisal[J]. AAPG Bulletin,2011,95(10):1725-1744. doi: 10.1306/02221110094

    CrossRef Google Scholar

    [12] HUNT J M. Generation and migration of petroleum from abnormally pressured fluids compartments[J]. AAPG Bulletin,1990,74:1-12.

    Google Scholar

    [13] 郝芳. 超压盆地生烃作用动力学与油气成藏机理[M]. 北京: 科学出版社, 2005.

    Google Scholar

    [14] 李小强,赵彦超. 东濮凹陷柳屯洼陷盐湖盆地超压成因[J]. 石油与天然气地质,2012,33(5):686-694. doi: 10.11743/ogg20120504

    CrossRef Google Scholar

    [15] 徐长贵,于海波,王军,等. 渤海海域渤中19大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发,2019,46(1):25-37.

    Google Scholar

    [16] 赵靖舟,李军,徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报,2017,38(9):973-998. doi: 10.7623/syxb201709001

    CrossRef Google Scholar

    [17] 蒋有录,王鑫,于倩倩,等. 渤海湾盆地含油气凹陷压力场特征及与油气富集关系[J]. 石油学报,2016,37(11):1361-1369. doi: 10.7623/syxb201611004

    CrossRef Google Scholar

    [18] HAO F,ZOU H Y,GONG Z S,et al. Hierarchies of overpressure retardation of organic matter maturation:Case studies from petroleum basins in China[J]. AAPG Bulletin,2007,91:1467-1498. doi: 10.1306/05210705161

    CrossRef Google Scholar

    [19] GUO X W,HE S,LIU K Y,et al. Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying Depression,Bohai Bay Basin,China[J]. AAPG Bulletin,2010,94:1859-1881. doi: 10.1306/05191009179

    CrossRef Google Scholar

    [20] 薛永安,李慧勇. 渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J]. 中国海上油气,2018,30(3):1-9.

    Google Scholar

    [21] 施和生,王清斌,王军,等. 渤中凹陷深层渤中19构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探,2019,24(1):36-45. doi: 10.3969/j.issn.1672-7703.2019.01.005

    CrossRef Google Scholar

    [22] 张善文,张林晔,张守春,等. 东营凹陷古近系异常高压的形成与岩性油藏的含油性研究[J]. 科学通报,2009,54(11):1570-1578.

    Google Scholar

    [23] 王国庆,宋国奇. 生烃增压在超压形成中的作用:以东营凹陷西部为例[J]. 科学技术与工程,2014(27):177-181. doi: 10.3969/j.issn.1671-1815.2014.27.035

    CrossRef Google Scholar

    [24] 樊洪海. 异常地层压力分析方法与应用[M]. 北京: 科学出版社, 2016.

    Google Scholar

    [25] 刘军,汪瑞良,舒誉,等. 烃源岩TOC质量分数地球物理定量预测新技术及在珠江口盆地的应用[J]. 成都理工大学学报:自然科学版,2012,9(4):415-419.

    Google Scholar

    [26] 陈宇航,姚根顺,刘震,等. 利用地震信息定量预测烃源岩TOC质量分数[J]. 中南大学学报:自然科学版,2016,47(1):159-165.

    Google Scholar

    [27] 王利,李宗星,刘成林,等. 柴达木盆地德令哈坳陷石炭系烃源岩成熟度演化史[J]. 地质力学学报,2019,25(3):370-381.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1080) PDF downloads(130) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint