2020 Vol. 36, No. 11
Article Contents

KANG Lin, GUO Tao, WANG Wei, ZHANG Can, WANG Guoqiang. DISPLACEMENT CALCULATION FOR STRIKE-SLIP FAULT BASED ON CORRELATION OF STRATA THICKNESS TENDENCY: A CASE FROM THE LIAODONG FAULT, OFFSHORE BOHAI BAY[J]. Marine Geology Frontiers, 2020, 36(11): 2-10. doi: 10.16028/j.1009-2722.2020.145
Citation: KANG Lin, GUO Tao, WANG Wei, ZHANG Can, WANG Guoqiang. DISPLACEMENT CALCULATION FOR STRIKE-SLIP FAULT BASED ON CORRELATION OF STRATA THICKNESS TENDENCY: A CASE FROM THE LIAODONG FAULT, OFFSHORE BOHAI BAY[J]. Marine Geology Frontiers, 2020, 36(11): 2-10. doi: 10.16028/j.1009-2722.2020.145

DISPLACEMENT CALCULATION FOR STRIKE-SLIP FAULT BASED ON CORRELATION OF STRATA THICKNESS TENDENCY: A CASE FROM THE LIAODONG FAULT, OFFSHORE BOHAI BAY

  • The Liaodong fault, located in the northeast Bohai Bay Basin, is a straight strike-slip fault formed in Late Eocene. Facts prove that the slipping of fault has a tremendous impact on the distribution of oil and gas in the region. However, the displacement of the strike-slip fault is always difficult to calculate in offshore areas for quantitative fault analysis due to various limitations. It also restricts detailed analysis of reservoir-forming conditions. Based upon the interpretation of structural features from the newly merged 3D seismic data, the Liaodong fault could be subdivided into three sections, i.e. the northern, middle, and southern sections. A new method was then adopted to analyze the similarity of strata-thickness variations trend on the two walls of the fault with the correlation coefficient. Some displaced sedimentary bodies are restored and used to check the calculated displacement with seismic attributes. The results are dependable, upon which the displacements of the Liaodong strike-slip fault in different periods and sections are acquired quantitatively. Combined with drilling data, it is confirmed that the strike-slip fault in northern Liaodong, where occur large displacement, has good fault sealing ability. Similar to the north, traps in the south are also favorable for hydrocarbon accumulation, due to good fault sealing conditions.

  • 加载中
  • [1] 万天丰. 中国大地构造学[M]. 北京: 地质出版社, 2011: 169-182.

    Google Scholar

    [2] 朱光,刘国生,牛漫兰,等. 郯庐断裂带的平移运动与成因[J]. 地质通报,2003,22(3):200-207. doi: 10.3969/j.issn.1671-2552.2003.03.009

    CrossRef Google Scholar

    [3] 施炜,张岳桥,董树文. 郯庐断裂带中段第四纪活动及其分段特征[J]. 地球学报,2003,24(1):11-18. doi: 10.3321/j.issn:1006-3021.2003.01.003

    CrossRef Google Scholar

    [4] 韩国卿,刘永江,Franz N,et al. 松辽盆地西缘边界断裂带中南段走滑性质时间及其位移量[J]. 中国科学:地球科学,2013,42(4):471-482.

    Google Scholar

    [5] 单家增,张占文,孙红军,等. 营口—佟二堡断裂带成因机制的构造物理模拟实验研究[J]. 石油勘探与开发,2004,31(1):15-17. doi: 10.3321/j.issn:1000-0747.2004.01.004

    CrossRef Google Scholar

    [6] 童亨茂,宓荣三,于天才,等. 渤海湾盆地辽河西部凹陷的走滑构造作用[J]. 地质学报,2008,82(8):1017-1026. doi: 10.3321/j.issn:0001-5717.2008.08.001

    CrossRef Google Scholar

    [7] 余朝华,韩清华,董冬冬,等. 莱州湾地区郯庐断裂中段新生代右旋走滑位移量的估算[J]. 天然气地球科学,2008,19(1):62-69. doi: 10.11764/j.issn.1672-1926.2008.01.62

    CrossRef Google Scholar

    [8] 曹忠祥. 营口—潍坊断裂带新生代走滑拉分—裂陷盆地伸展量、沉降量估算[J]. 地质科学,2008,43(1):65-81. doi: 10.3321/j.issn:0563-5020.2008.01.006

    CrossRef Google Scholar

    [9] 彭文绪,张如才,孙和风,等. 古新世以来郯庐断裂的位移量及其对莱州湾凹陷的控制[J]. 大地构造与成矿,2010,34(4):585-592.

    Google Scholar

    [10] PEACOCK D C. Displacements and segment linkage in strike-slip fault zones[J]. Journal of Structural Geology,1991,11(9):1026-1035.

    Google Scholar

    [11] 徐佑德,柳忠泉. 郯庐断裂带营潍段走滑断裂特征[J]. 石油天然气学报,2006,28(6):12-15. doi: 10.3969/j.issn.1000-9752.2006.06.003

    CrossRef Google Scholar

    [12] 王应斌,黄雷. 渤海海域营潍断裂带展布特征及新生代控盆模式[J]. 地质学报,2013,87(12):1811-1888.

    Google Scholar

    [13] 孙磉礅. 营潍断裂带结构特征及其与相邻盆地的关系[J]. 大地构造与成矿,2008,32(4):418-426.

    Google Scholar

    [14] 周斌,邓志辉,晁洪太,等. 营潍断裂带走滑构造特征、演化及动力学机制[J]. 西北地震学报,2008,30(2):117-123.

    Google Scholar

    [15] 黄雷,周心怀,刘池洋,等. 渤海海域新生代盆地演化的重要转折期证据及区域动力学分析[J]. 中国科学:地球科学,2012,42(6):89-94.

    Google Scholar

    [16] 曹忠祥,任凤楼,宋国奇,等. 营口—潍坊断裂带对辽东湾坳陷东部凸起的形成及构造分段的控制作用:来自物理模拟实验和断层几何学特征的证据[J]. 地质科学,2008,4(2):179-188.

    Google Scholar

    [17] WOODCOCK N H,FISCHER M. Strike-slip duplexes[J]. Journal of Structural Geology,1986,8(7):725-735. doi: 10.1016/0191-8141(86)90021-0

    CrossRef Google Scholar

    [18] MITRA S,PAUL D. Structural geometry and evolution of releasing and restraining bends:Insights from laser-scanned experimental modls[J]. AAPG Bulletin,2011,95(7):1147-1180. doi: 10.1306/09271010060

    CrossRef Google Scholar

    [19] CEMBRANO J,GONZALEZA G,ARANCIBIAB G,et al. Fault zone development and strain partitioning in an extensional strike-slip duplex:a case study from the Mesozoic Atacama fault system[J]. Northern Chile. Tectonophysics,2005,400:105-125. doi: 10.1016/j.tecto.2005.02.012

    CrossRef Google Scholar

    [20] 孟文,陈群策,吴满路,等. 龙门山断裂带现今构造应力场特征及分段性研究[J]. 地球物理学进展,2013,28(3):1150-1160. doi: 10.6038/pg20130306

    CrossRef Google Scholar

    [21] 康琳,吕丁友,尚锁贵,等. 辽东湾坳陷新生代构造变形特征及营潍断裂带的表现[J]. 石油学报,2019,40(增刊2):79-90.

    Google Scholar

    [22] 彭靖淞,徐长贵,吴奎,等. 郯庐断裂带辽东凸起的形成与古辽中洼陷的瓦解[J]. 石油学报,2015,36(3):274-285. doi: 10.7623/syxb201503003

    CrossRef Google Scholar

    [23] HARDING T P. Seismic Characteristics and identification of negative flower structures,positive flower structures,and positive structural inversion[J]. AAPG Bulletin,1985,69(4):582-600.

    Google Scholar

    [24] 罗胜元,何生,王浩. 断层内部结构及其对封闭性的影响[J]. 地球科学进展,2012,27(2):154-164.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(1373) PDF downloads(149) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint