2021 Vol. 37, No. 3
Article Contents

ZHAO Chong, LI Huifeng, ZHAO Chi, YANG Feilong, YANG Wenping, HUANG Dezhi, LUO Hao, ZHAO Xiu, ZHANG Xue. SUPPRESSION OF ABNORMAL AMPLITUDE NOISE WITH SEISMIC WAVE SIMILARITY NON-LOCAL MEAN FILTER[J]. Marine Geology Frontiers, 2021, 37(3): 60-65. doi: 10.16028/j.1009-2722.2020.069
Citation: ZHAO Chong, LI Huifeng, ZHAO Chi, YANG Feilong, YANG Wenping, HUANG Dezhi, LUO Hao, ZHAO Xiu, ZHANG Xue. SUPPRESSION OF ABNORMAL AMPLITUDE NOISE WITH SEISMIC WAVE SIMILARITY NON-LOCAL MEAN FILTER[J]. Marine Geology Frontiers, 2021, 37(3): 60-65. doi: 10.16028/j.1009-2722.2020.069

SUPPRESSION OF ABNORMAL AMPLITUDE NOISE WITH SEISMIC WAVE SIMILARITY NON-LOCAL MEAN FILTER

  • Non-local mean filtering denoises the image based on the similarity between pixels in the image. However, this method cannot effectively suppress the abnormal amplitude noise in the image. The seismic signals simultaneously in common offset gathers (equal offset gathers sorted by shot coordinates) have the characteristics of high similarity and concentrated distribution. So, the abnormal amplitude noise in the signal can be judged according to the weight function of non-local mean filtering. Based on the theory mentioned above, this paper proposes a non-local mean filtering method for suppressing abnormal noise based on the similarity of seismic waves to effectively suppress random noise and abnormal amplitude noise in seismic signals. The trial results of theoretical and actual seismic data show that the method proposed in this paper can effectively suppress random noise and abnormal amplitude noise in seismic signals, and can further improve the signal-to-noise ratio of seismic data.

  • 加载中
  • [1] BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//Peoceedings of Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2005.

    Google Scholar

    [2] 杨桄,封磊,孙怀江,等. 基于低秩和全变差正则化的图像压缩感知重构[J]. 江苏大学学报(自然科学版),2017,38(5):571-575,614.

    Google Scholar

    [3] 李亚峰. 一种基于多字典学习的图像分割模糊方法[J]. 电子学报,2018,46(7):1700-1709. doi: 10.3969/j.issn.0372-2112.2018.07.023

    CrossRef Google Scholar

    [4] OSHER S,BURGER M,GOLDFARB D,et al. An iterative regularization method for total variation-based image restoration[J]. Siam J Multiscale Model Simul,2005,4:460. doi: 10.1137/040605412

    CrossRef Google Scholar

    [5] LUO E,CHAN S H,NGUYEN T Q. Adaptive image denoising by mixture adaptation[J]. IEEE T I Process,2016,25:4489. doi: 10.1109/TIP.2016.2590318

    CrossRef Google Scholar

    [6] 刘国峰,刘洪,李博,等. 山地地震资料叠前时间偏移方法及其GPU实现[J]. 地球物理学报,2009,52(12):3101-3108. doi: 10.3969/j.issn.0001-5733.2009.12.019

    CrossRef Google Scholar

    [7] 裴银祥. 快速非局部均值图像去噪算法[D]. 郑州: 郑州大学, 2014.

    Google Scholar

    [8] 樊勇. 基于高斯噪声的图像去噪算法研究[D]. 成都: 西南石油大学, 2014.

    Google Scholar

    [9] 朱洪昌,玄长虹,刘群强. 复杂地表区浮动基准面计算方法的优化选取[J]. 油气地球物理,2010,8(2):22-27.

    Google Scholar

    [10] 崔树果,朱凌燕,王建花. f-x域Cadzow技术分块压制随机噪声及其应用[J]. 石油物探,2012,51(1):43-50,112. doi: 10.3969/j.issn.1000-1441.2012.01.006

    CrossRef Google Scholar

    [11] 袁恩辉,陈风来,奇志斌,等. 奇异值分解在去除特殊干扰波中的研究与应用[J]. 非常规油气,2015,2(5):20-25. doi: 10.3969/j.issn.2095-8471.2015.05.004

    CrossRef Google Scholar

    [12] 蔡斌,刘卫,郑重,等. 一种改进的非局部均值去噪算法[J]. 模式识别与人工智能,2016,29(1):1-10.

    Google Scholar

    [13] 王银杰. 基于非局部均值滤波的图像去噪算法[D]. 哈尔滨: 哈尔滨理工大学, 2019.

    Google Scholar

    [14] 姜翠苹,李涛,周小伟,等. 叠前保幅宽频处理技术及应用[J]. 非常规油气,2016,3(5):32-37. doi: 10.3969/j.issn.2095-8471.2016.05.006

    CrossRef Google Scholar

    [15] 黄宁,关语晴. 基于复杂地表横向一致性地震处理技术及应用:以西部某油田QS地区资料为例[J]. 非常规油气,2018,5(6):42-49. doi: 10.3969/j.issn.2095-8471.2018.06.008

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(825) PDF downloads(36) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint