Citation: | ZHANG Zhenbo, LUO Wei. ANALYSIS OF THE EFFECTS OF WIDE-AZIMUTH AND DOUBLE-AZIMUTH FOR MARINE STREAMER[J]. Marine Geology Frontiers, 2021, 37(3): 66-73. doi: 10.16028/j.1009-2722.2020.037 |
In order to improve the middle and deep seismic imaging in the Panyu 4 Depression of the Pearl River Mouth Basin, the wide azimuth seismic exploration test by twin-boat towline was carried out, and 1 680 folds of full coverage seismic data acquired. According to an azimuth width of 15 degrees, 24 azimuth volumes are created and processed, and the data of different azimuth widths and orthogonal dual azimuth data are superimposed respectively. The results of different azimuth widths and different folds are collected and analyzed. It is concluded that the seismic imaging effect is significantly improved with the increase in azimuth width and folds; under the same folds, the dominant imaging azimuth imaging effect is better; and the imaging effect of orthogonal dual azimuth is between the two directions, which has no advantage with the imaging effect of dominant imaging azimuth. Therefore, the most effective way to improve the effect of middle and deep seismic imaging is to increase the number of folds in target dominant imaging azimuth.
[1] | VERMEER G. Wide-azimuth towed-streamer data acquisition and simultaneous sources[J]. The Leading Edge,2009,28(8):950-958. doi: 10.1190/1.3192843 |
[2] | 李欣,尹成,葛子建,等. 海上地震采集观测系统研究现状与展望[J]. 西南石油大学学报(自然科学版),2014,36(5):67-80. |
[3] | 刘依谋,印兴耀,张三元,等. 宽方位地震勘探技术新进展[J]. 石油地球物理勘探,2014,49(3):596-610. |
[4] | DIAGON F L, MOLDOVEANU N, EL-TOUKHY M, et al. Comparison between multi-azimuth, wide-azimuth, and full-azimuth towed-streamer acquisition: a full 3D finite-difference study in the Santos Basin[C]//Expanded Abstracts of 87th Annual International SEG Meeting, 2017: 269-273. |
[5] | ZDRAVEVA O, YONG S L, MEDINA E, et al. Ultra-large-scale wide-azimuth acquisition and broadband imaging in the Campeche Basin[C]//Expanded Abstracts of 88nd Annual International SEG Meeting, 2018: 61-65. |
[6] | 张慕刚,骆飞,汪长辉. “两宽一高”地震采集技术工业化应用的进展[J]. 天然气工业,2017,37(3):1-8. doi: 10.3787/j.issn.1000-0976.2017.03.001 |
[7] | 李艳青. 几种双船地震施工方法[J]. 物探装备,2014,24(5):298-301. doi: 10.3969/j.issn.1671-0657.2014.05.004 |
[8] | 凌云研究小组. 宽方位角地震勘探应用研究[J]. 应用地球物理勘探,2003,38(4):350-357. |
[9] | 张保庆,周辉,左黄金,等. 宽方位地震资料处理技术及应用效果[J]. 石油地球物理勘探,2011,46(03):396-400,406. |
[10] | CHANDOLA S K, VELAYATHAM T, FOO1 L C, et al. Imaging black pond : first broadband circular shooting survey in Malaysia with simultaneous deployment of two advanced acquisition techniques[C]//Expanded Abstracts of 83rd Annual International SEG Meeting, 2013: 211-215. |
[11] | MOLDOVEANU N, KAPOOR J. Quad coil towed streamer marine acquisition[C]//Expanded Abstracts of 85th Annual International SEG Meeting, 2015: 81-85. |
[12] | 李庆忠. 对宽方位角三维采集不要盲从[J]. 石油地球物理勘探,2001,36(1):122-124. doi: 10.3321/j.issn:1000-7210.2001.01.018 |
[13] | ZHENG Z B, LUO W, ZENG T, et al. The first marine seismic survey of dual-source random shooting offshore China[C]//Expanded Abstracts of 89th Annual International SEG Meeting, 2019: 288-292. |
[14] | ZHAN C, MALIK R, SPECHT J, et al. Deblending of continuously recorded OBN data by subtraction integrated with a median filter[C]//Expanded Abstracts of 85th Annual International SEG Meeting, 2015: 4673-4677. |
[15] | CAI J, CHANG Z, PENG C, et al. Deblending of continuous recording conventional NAZ data set to reveal deep structures: a Trinidad case study[C]//Expanded Abstracts of 87th Annual International SEG Meeting, 2017: 4925-4929. |
[16] | MASOOMZADEH H, BALDOCK S, LIU Z J. Deblending continuous records by sparse inversion of energetic and coherent surfaces[C]//Expanded Abstracts of 88th Annual International SEG Meeting, 2018: 4065-4069. |
[17] | DEN BOER L, SAYERS C M, GOFER E, et al. Characterization of fluid flow anisotropy in a carbonate reservoir using AVAz inversion of wide-azimuth seismic data[C]//Expanded Abstracts of 87th Annual International SEG Meeting, 2017: 3012-3016. |
[18] | DHELIE P E, DANIELSEN V, SHEN H L, et al. Hexasource:wide tow dithered six source marine acquisition in the Barents Sea[C]//Expanded Abstracts of 88th Annual International SEG Meeting, 2018: 46-50. |
Schematic diagram of offshore towing cable 3D seismic acquisition and observation system
Schematic diagram of wide azimuth observation system with towing cable at sea
Schematic diagram of offshore towing cable multi-azimuth observation system
Old data profile of PY4 Depression
Schematic diagram of wide azimuth test observation system in PY4 Depression
Rose diagram for wide azimuth test
Wide azimuth data processing flow chart
Superimposed profiles with different width and azimuth in parallel acquisition direction of PY4 Depression
Superimposed profiles with different width and azimuth in vertical acquisition direction of PY4 Depression
Orthogonal double azimuth stack section of PY4 Depression