2021 Vol. 37, No. 5
Article Contents

LIU Xiaofeng, DUAN Xiaoyong, TIAN Yuan, CAO Ke, GAO Fei, YIN Ping, LIU Dongyan. VARIATION OF NUTRIENTS IN SANMEN BAY AND ITS RESPONSE TO HUMAN ACTIVITIES[J]. Marine Geology Frontiers, 2021, 37(5): 46-56. doi: 10.16028/j.1009-2722.2020.052
Citation: LIU Xiaofeng, DUAN Xiaoyong, TIAN Yuan, CAO Ke, GAO Fei, YIN Ping, LIU Dongyan. VARIATION OF NUTRIENTS IN SANMEN BAY AND ITS RESPONSE TO HUMAN ACTIVITIES[J]. Marine Geology Frontiers, 2021, 37(5): 46-56. doi: 10.16028/j.1009-2722.2020.052

VARIATION OF NUTRIENTS IN SANMEN BAY AND ITS RESPONSE TO HUMAN ACTIVITIES

More Information
  • Some key gulfs in China are facing eutrophication related to terrigenous input and human activities. The weak hydrodynamics of the gulf brings about more serious challenges to the water management organizations. In recent years, many projects have been lunched in Zhejiang province to improve the water environment of gulfs. As the result, water qualities are significantly improved. Sanmen Bay, the second largest in the province has been a key research object of nutrition survey for almost 30 years. Based on the monitoring data in the past 30 years and the joint survey results conducted in September 2019, acquired are 54 samples from river basins, 30 samples from sea water and 6 samples from precipitation. All the samples are analyzed for nutrient contents, such as NO3 and NO2, NH4+, PO43−. Based on the results and the spatial distribution patterns of the nutrients in the bay, the influence factors on the nutrient spatial distribution patterns are revealed, especially the long-term changes of nutrients and their response to human activities. At present, the eutrophication problem remains prominent in Sanmen Bay. The contents of DIN and DIP in the sea sample range from 0 to 439 μg/L and from 18 to 59 μg/L, with an average of 233 μg/L and 37 μg/L, respectively. The contents of DIN and DIP in the river sample range from 77 to 1 586 μg/L and from 3 to 126 μg/L, with an average of 466 μg/L and 48 μg/L, respectively. The contents of nitrogen and phosphorus increased from the upstream to the downstream. Agriculture has great influences on NH4+-N and NO3-N, while urban living and industrial production have great influences on NH4+-N, NO2-N and DIP. The high values of nitrogen and phosphorus in the bay were mainly distributed at the head of the bay and the entrance to the sea where water exchanges are rather weak. The nutrient concentration shows a decreasing trend from the high values nearshore to the low value offshore. The mariculture was the main contributor of nutrients to the environment nearshore. During the period of 1987-2007, Sanmen Bay suffered a continuous increase in water nutrients. After 2010, with the enforcement of marine and land ecological environmental management policies, DIN and DIP have showed an obvious decreasing trend, and the water environment of the bay is greatly improved.

  • 加载中
  • [1] WANG X,DAIGGER G,DE VRIES W,et al. Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes.[J]. Nature Communications,2019,10(1):1-12. doi: 10.1038/s41467-018-07882-8

    CrossRef Google Scholar

    [2] DANIEL J C,HANS W P,ROBER W H,et al. Controlling eutrophication:nitrogen and phosphorus[J]. Science,2009,323:1014-1015.

    Google Scholar

    [3] WILSON H F,XENOPOULOS M A. Effects of agricultural land use on the composition of fluvial dissolved organic matter[J]. Nature Geoscience,2009,2(1):37-41.

    Google Scholar

    [4] BEMAN J,ARRIGO K,MATSON P. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean[J]. Nature,2005,434(7030):211-214.

    Google Scholar

    [5] ENZAI D,CÉSAR T,ADAM F A P,et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature Geoscience,2020,13(3):221-226.

    Google Scholar

    [6] AMATO H K,WONG N M,PELC C,et al. Effects of concentrated poultry operations and cropland manure application on antibiotic resistant Escherichia coli and nutrient pollution in Chesapeake Bay watersheds[J]. Science of The Total Environment,2020,735(15):1-11.

    Google Scholar

    [7] HUMBORG C,ITTEKKOT V,COCIASU A,et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature,1997,386(6623):385-388.

    Google Scholar

    [8] MEIER H E M,MÜLLER-KARULIS B,ANDERSSON H C,et al. Impact of climate change on ecological quality indicators and biogeochemical fluxes in the Baltic Sea:a multi-model ensemble study[J]. Ambio,2012,41(6):558-573.

    Google Scholar

    [9] SANTOS I R S,BURNETT W C,CHANTON J,et al. Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater‐derived fluxes to the coastal ocean[J]. Limnology and Oceanography,2008,53(2):705-718.

    Google Scholar

    [10] 黄潘阳,陈培雄,来向华,等. 三门湾2003—2013年间围涂工程对水动力环境的影响研究[J]. 中国海洋大学学报(自然科学版),2017,47(10):91-98.

    Google Scholar

    [11] 宁修仁. 乐清湾、三门湾养殖生态和养殖容量研究与评价[M]. 北京: 海洋出版社, 2005.

    Google Scholar

    [12] 《中国海湾志》编纂委员会. 中国海湾志第五分册·上海市和浙江省北部海湾[M]. 北京: 海洋出版社, 1992: 234-308.

    Google Scholar

    [13] 施晓来. 春秋季三门湾表层海水氮磷营养盐等要素含量的分布特征[J]. 应用海洋学学报,2013,32(4):461-467. doi: 10.3969/J.ISSN.2095-4972.2013.04.003

    CrossRef Google Scholar

    [14] 施晓来. 近15 a来三门湾海域氮、磷营养盐分布与富营养化状况的变化分析[J]. 海洋学研究,2013,31(4):63-67. doi: 10.3969/j.issn.1001-909X.2013.04.010

    CrossRef Google Scholar

    [15] 庞卫文. 三门湾表层海水氮磷营养盐含量及分布特征[J]. 农业与技术,2014,34(8):2. doi: 10.3969/j.issn.1671-962X.2014.08.008

    CrossRef Google Scholar

    [16] 曾江宁, 潘建明, 梁楚进. 浙江省重点港湾生态环境综合调查报告[M]. 北京: 海洋出版社, 2011.

    Google Scholar

    [17] 许尔琪. 土地利用对水体营养物影响的研究进展[J]. 中国生态农业学报,2019,27(12):1880-1891.

    Google Scholar

    [18] 郑明凤,陈斯典,秦华鹏,等. 降雨径流污染对深圳湾富营养化影响的模拟研究[J]. 中国给水排水,2017,33(9):133-138.

    Google Scholar

    [19] 樊银鹏,胡山鹰,陈定江,等. 中国磷元素代谢模式的演化与分析[J]. 清华大学学报(自然科学版),2008,48(6):1027-1031. doi: 10.3321/j.issn:1000-0054.2008.06.029

    CrossRef Google Scholar

    [20] 冯绍元,郑耀泉. 农田氮素的转化与损失及其对水环境的影响[J]. 农业环境保护,1996(6):277-280.

    Google Scholar

    [21] COSKUN D,BRITTO D T,SHI W,et al. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition[J]. Nature Plants,2017,3(6):812-818. doi: 10.1038/nplants.2017.74

    CrossRef Google Scholar

    [22] CARPENTER S R,CARACO N F,CORRELL D L,et al. Correll nonpoint pollution of surface waters with phosphorus and nitrogen[J]. Ecological Applications,1998,8(3):559-568.

    Google Scholar

    [23] TAYLOR M,QIUWEN C,KIMBERLY VAN M,et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment,2020,1(4):103-117.

    Google Scholar

    [24] FIORENZA M,BENJAMIN S H,SHAUN W,et al. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems:assessing current pressures and opportunities[J]. Plosone,2017,8(12):103-109.

    Google Scholar

    [25] 徐淑敏,齐占会,史荣君,等. 水产养殖对亚热带海湾氮磷营养盐时空分布的影响−以深澳湾为例[J]. 南方水产科学,2019,15(4):29-38. doi: 10.12131/20190049

    CrossRef Google Scholar

    [26] 舒廷飞,温琰茂,陆雍森,等. 网箱养殖N、P物质平衡研究−以广东省哑铃湾网箱养殖研究为例[J]. 环境科学学报,2004,24(6):1046-1052. doi: 10.3321/j.issn:0253-2468.2004.06.017

    CrossRef Google Scholar

    [27] BOUWMAN L,KLEIN K,KLAAS W V,et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(52):20882-21195.

    Google Scholar

    [28] 陈晓英,张杰,马毅,等. 近40 a来三门湾海岸线时空变化遥感监测与分析[J]. 海洋科学,2015,39(2):43-49. doi: 10.11759/hykx20141011004

    CrossRef Google Scholar

    [29] 杨士瑛, 陈培雄. 三门湾自然环境特征与资源可持续利用[M]. 青岛: 中国海洋大学出版社, 2018.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(2533) PDF downloads(132) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint