Citation: | YUE Junpei, HUANG Xiaobo, LIU Pengbo, XIONG Yu, YANG Chuanchao. FAULT CHARACTERIZATION AND RESERVOIR FORMING UNDER CONTROL OF “SOURCE-FAULT-TRAP”: A CASE OF THE BOUNDARY FAULTS IN THE SOUTHERN PART OF MIAOXINAN UPLIFT[J]. Marine Geology Frontiers, 2020, 36(12): 32-38. doi: 10.16028/j.1009-2722.2020.031 |
In order to reveal the petroleum distribution pattern in the southern part of the Miaoxinan Uplift so as to quickly find some oil and gas enriched areas, various approaches are used to seek for favorable paths for efficient migration and accumulation of oil and gas, based on the hydrocarbon reservoir forming stages established for this area. Four boundary faults are depicted meticulously in geometry and kinematics by the recently collected and processed 3D seismic data, the completed well information and logging data. The results show that the faults F1 and F2 have no convex surface ridge, and their activity rate is too small in the period of hydrocarbon reservoir formation, and thus they are disadvantaged for hydrocarbon to migrate up to higher position. However, the F3 fault has an obvious convex surface ridge and most of the activity rate may be as high as 106 m/Ma, so the oil and gas transporting efficiency of this fault is relatively high. The fault F4 has also some convex surface ridges and the activity rate is 63 m/Ma, so it is advantaged for hydrocarbon migration to higher position. Finally combining source rock and the disposition relationship between faults and traps, it is concluded that the fault F3 has good coupling relationship of “source-fault-trap”, and the trap W in the step-fault zone of the southern part of Miaoxinan Uplift has bigger potential in oil and gas enrichment. This method is not only applied in the exploration of QHD33 and LD16 areas of the Bohai Sea, but also provide important reference for oil and gas exploration in the Bohai area.
[1] | 付广,吕延防,薜永超,等. 油气运移通道及其对成藏的控制[J]. 海相油气地质,1999,4(3):24-28. |
[2] | 牛成民,杜晓峰,邹华耀,等. 渤海海域石臼坨凸起油气输导体系与运聚模式[J]. 中国海上油气,2016,28(3):44-49. |
[3] | 李明诚. 石油与天然气运移研究综述[J]. 石油勘探与开发,2000,27(4):3-10. doi: 10.3321/j.issn:1000-0747.2000.04.002 |
[4] | 张丹峰,周进峰,王震宇,等. 曲面型断层的露头特征及其地质意义[J]. 断块油气田,2017,24(4):462-465. |
[5] | 高丽明,何登发,桂宝玲,等. 东营凹陷民丰洼陷边界断层三维几何学及运动学特征[J]. 石油勘探与开发,2014,41(5):546-553. doi: 10.11698/PED.2014.05.05 |
[6] | HINDLE A D. Petroleum migration pathways and charge concentration:a Three-Dimensional model[J]. AAPG Bulletin,1997,81(9):1451-1481. |
[7] | 蒋有录,刘景东,李晓燕,等. 根据构造脊和地球化学指标研究油气运移路径:以东濮凹陷濮卫地区为例[J]. 地球科学,2011,36(3):521-529. |
[8] | 孙同文,付广,吕延防,等. 南堡1号构造中浅层油气富集主控因素分析[J]. 天然气地球科学,2014,25(7):1042-1051. doi: 10.11764/j.issn.1672-1926.2014.07.1042 |
[9] | 平贵东,刘云燕,高煜婷,等. 走滑断裂端部破碎带发育特征及控藏作用:以方正断陷大罗密地区走滑断裂系为例[J]. 中国矿业大学学报,2016,45(3):553-561. |
[10] | 姜贵璞,付广,孙同文. 利用地震资料确定油源断裂输导油气能力及油气富集的差异性[J]. 地球物理学进展,2017,32(1):160-166. doi: 10.6038/pg20170122 |
[11] | 姚城,张新涛,于海波,等. 石臼坨凸起东南斜坡带输导体系与油气运聚模式[J]. 断块油气田,2017,24(6):755-759. |
[12] | 付广,王浩然. 不同时期油源断裂输导油气有利部位确定方法及其应用[J]. 石油学报,2018,39(2):180-188. doi: 10.7623/syxb201802006 |
[13] | 周心怀,牛成民,滕长宇. 环渤中地区新构造运动期断裂活动与油气成藏关系[J]. 石油与天然气地质,2009,30(4):469-475. doi: 10.3321/j.issn:0253-9985.2009.04.013 |
[14] | 刘朋波,官大勇,王昕,等. 渤东地区新近系“脊-断”耦合控藏模式与定量表征[J]. 成都理工大学学报(自然科学版),2017,44(4):470-477. |
[15] | 邹华耀,周心怀,鲍晓欢,等. 渤海海域古近系、新近系原油富集/贫化控制因素与成藏模式[J]. 石油学报,2010,31(6):885-893. doi: 10.7623/syxb201006003 |
[16] | 娄国泉. 高邮凹陷断裂对始新统油气成藏的控制作用[J]. 石油天然气学报,2011,33(1):1-5. doi: 10.3969/j.issn.1000-9752.2011.01.001 |
[17] | 庄新兵,邹华耀,滕长宇. 新构造运动期断裂活动对油气的控制作用:以渤中地区为例[J]. 中国矿业大学学报,2012,41(3):452-459. |
[18] | 王昕,高坤顺,王玉秀,等. 庙西南凸起勘探发现与油气成藏条件分析[J]. 特种油气藏,2013,20(2):16-19. doi: 10.3969/j.issn.1006-6535.2013.02.004 |
[19] | 杨传超,张新涛,郭涛,等. 源外斜坡区油气运移主控因素及优势路径刻画:以渤海海域石臼坨凸起斜坡区为例[J]. 断块油气田,2018,25(6):699-703. |
Location of study area and Neogene top structure of Guantao Formation
Geometric shape and property of the faults F1,F2,F3 and F4
Activity of faults F1,F2,F3 and F4 in different periods
Seismic profile of source rock distribution in southern sag of Miaoxi
Oil and gas accumulation model of trap W in the step-fault zone of study area
A successful example of “source-fault-trap” coupling in QHD33 area of Shijiutuo Uplift[19]