2021 Vol. 37, No. 2
Article Contents

SI Shaowen, WANG Dawei, HE Huizhong, SUN Yue, SUN Jin, WU Shiguo. SEABED INSTABILITY INVESTIGATION AND ASSESSMENT PROCEDURES[J]. Marine Geology Frontiers, 2021, 37(2): 21-30. doi: 10.16028/j.1009-2722.2020.008
Citation: SI Shaowen, WANG Dawei, HE Huizhong, SUN Yue, SUN Jin, WU Shiguo. SEABED INSTABILITY INVESTIGATION AND ASSESSMENT PROCEDURES[J]. Marine Geology Frontiers, 2021, 37(2): 21-30. doi: 10.16028/j.1009-2722.2020.008

SEABED INSTABILITY INVESTIGATION AND ASSESSMENT PROCEDURES

More Information
  • Unlike continental landslides, underwater landslides are hard to be observed due to the specific hydrodynamic conditions. So far there have been no standards and guidelines available for the procedures on disaster-causing mechanism studies and instability assessment, which involves not only the in-depth study of seabed instability, but also the formation and evolution of buttle and abyss, deep sea project development, business interests, marine geological disaster forecast, safety of the marine engineering and constructions, and other problems. With the rapid progress in China's marine scientific survey and various submarine projects, great achievements have been made by China in the past decades, in particular in the following three aspects: marine geological survey, disaster mechanism analysis and instability assessment. By integrating geophysical, in-situ seabed monitoring, numerical simulation, physical experiment simulation and other techniques, a complete process from early investigation to late evaluation is preliminarily presented in this paper, which is critical important for seabed stability assessment indeed.

  • 加载中
  • [1] BUGGE T,BELDERSON R,KENYON N H,et al. The storegga slide[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences,1988,325(1586):357-388.

    Google Scholar

    [2] CHAYTOR J D,BRINK U S T,SOLOW A R,et al. Size distribution of submarine landslides along the U. S. Atlantic Margin[J]. Marine Geology,2009,264(1/2):16-27.

    Google Scholar

    [3] KRASTEL S, FELDENS P, GEORGIOPOULOU A, et al. The grand banks landslide area revisited[C]//AGU Fall Meeting, 2016: 57-62.

    Google Scholar

    [4] CLAGUE J J,BOBROWSKY P T,HUTCHINSON I. A review of geological records of large tsunamis at Vancouver Island,british columbia,and implications for hazard[J]. Quaternary Science Reviews,2000,19(9):852-863.

    Google Scholar

    [5] OUYED M,IDRES M,BOURMATTE A,et al. Attempt to identify seismic sources in the eastern Mitidja Basin using gravity data and aftershock sequence of the Boumerdes (May 21,2003; Algeria) earthquake[J]. Journal of Seismology,2011,15(2):173-189.

    Google Scholar

    [6] HSU S K,KUO J,LO C L,et al. Turbidity currents,submarine landslides and the 2006 Pingtung earthquake off sw Taiwan[J]. Terrestrial Atmospheric & Oceanic Sciences,2009,19(6):767-772.

    Google Scholar

    [7] BAEHR J N, REES S I, BOATMAN T H, et al. Public acceptance of structural solutions to hurricane damage in post-katrina Mississippi[C]//American: ASCE, 2008: 72-79.

    Google Scholar

    [8] 方振砉. “渤海2号”翻沉真相[J]. 中国石油石化,2013(23):76-79.

    Google Scholar

    [9] TOMMASI P, BALDI P, CHIOCCI F L, et al. The landslide sequence induced by the 2002 eruption at Stromboli volcano[M]. Berlin: Springer Berlin Heidelberg, 2005: 755-763.

    Google Scholar

    [10] BRYANT E. Earthquake-generated tsunami[M]. Springer International Publishing, 2014: 85-102.

    Google Scholar

    [11] BUNZ S,MIENERT J,BERNDT C. Geological controls on the storegga gas-hydrate system of the mid-Norwegian continental margin[J]. Earth & Planetary Science Letters,2003,209(3/4):278-307.

    Google Scholar

    [12] GU C. Geographical report of 311 earthquake in Japan[J]. Acta Geographica Sinica,2011,66(6):853-861.

    Google Scholar

    [13] HEIDARZADEH M,MUHARI A,WIJANARTO A B. Insights on the source of the 28 September 2018 Sulawesi tsunami,Indonesia based on spectral analyses and numerical simulations[J]. Pure and Applied Geophysics,2018,178(3):67-73.

    Google Scholar

    [14] PAKOKSUNG K,SUPPASRI A,IMAMURA F,et al. Simulation of the submarine landslide tsunami on 28 September 2018 in Palu Bay,Sulawesi Island,Indonesia,using a two-layer model[J]. Pure and Applied Geophysics,2019,176(12):78-95.

    Google Scholar

    [15] SILVA A J,BAXTER C D P,LAROSA P T,et al. Investigation of mass wasting on the continental slope and rise[J]. Marine Geology,2004,203(3):355-366.

    Google Scholar

    [16] HAFLIDASON H,SEJRUP H P,NYGRD A,et al. The storegga slide:architecture,geometry and slide development[J]. Marine Geology,2004,213(1/4):201-234.

    Google Scholar

    [17] FISHER M A,NORMARK W R,GREENE H G,et al. Geology and tsunamigenic potential of submarine landslides in Santa Barbara Channel,southern California[J]. Marine Geology,2005,224(1):1-22.

    Google Scholar

    [18] VANNESTE M,BERNDT C,LABERG J S,et al. On the origin of large shelf embayments on glaciated margins:effects of lateral ice flux variations and glacio-dynamics west of Svalbard[J]. Quaternary Science Reviews,2007,26(19/21):2400-2419.

    Google Scholar

    [19] SULTAN N,VOISSET M,MARSSET B,et al. Potential role of compressional structures in generating submarine slope failures in the Niger Delta[J]. Marine Geology,2007,237(3/4):169-190.

    Google Scholar

    [20] CHAYTOR J D, DEMOPOULOS A W J, BRINK U S T, et al. Assessment of canyon wall failure process from multibeam bathymetry and remotely operated vehicle (rov) observations, Us Atlantic continental margin[M]. Berlin: Springer International, 2016: 72-86.

    Google Scholar

    [21] SOBIESIAK M S,ALSOP G I,KNELLER B,et al. Sub-seismic scale folding and thrusting within an exposed mass transport deposit:a case study from nw argentina[J]. Journal of Structural Geology,2017,96(5):176-191.

    Google Scholar

    [22] ZUMBERGE M,ALNES H V,EIKEN O,et al. Precision of seafloor gravity and pressure measurements for reservoir monitoring[J]. Geophysics,2008,73(6):133-141.

    Google Scholar

    [23] WALLACE L M,WEBB S C,ITO Y,et al. Slow slip near the trench at the Hikurangi subduction zone,New Zealand[J]. Science,2016,352(6286):701-704.

    Google Scholar

    [24] 朱超祁. 海底天然气水合物开采导致的地质灾害及其监测技术[J]. 灾害学,2017(3):58-62.

    Google Scholar

    [25] 李风华,路艳国,王海斌,等. 海底观测网的研究进展与发展趋势[J]. 中国科学院院刊,2017(3):321-330.

    Google Scholar

    [26] KUBO Y,INAGAKI F,TONAI S,et al. New Chikyu Shallow Core Program (SCORE):exploring mass transport deposits and the subseafloor biosphere off Cape Erimo,northern Japan[J]. Scientific Drilling,2020,27:25-33.

    Google Scholar

    [27] BULL S,CARTWRIGHT J,HUUSE M. A review of kinematic indicators from mass-transport complexes using 3D seismic data[J]. Marine & Petroleum Geology,2009,26(7):1441-1151.

    Google Scholar

    [28] GUZZETTI F,MONDINI A C,CARDINALI M,et al. Landslide inventory maps:new tools for an old problem[J]. Earth Science Reviews,2012,112(1/2):42-66.

    Google Scholar

    [29] LOCAT J,LEE H J. Submarine landslides:advances and challenges[J]. Canadian Geotechnical Journal,2002,39(1):193-212.

    Google Scholar

    [30] URGELES R,CAMERLENGHI A. Submarine landslides of the Mediterranean Sea:trigger mechanisms,dynamics,and frequency-magnitude distribution[J]. Journal of Geophysical Research Earth Surface,2013,118(4):2600-2618.

    Google Scholar

    [31] NAJAFI-JILANI A,ATAIE-ASHTIANI B. Estimation of near-field characteristics of tsunami generation by submarine landslide[J]. Ocean Engineering,2008,35(5/6):545-557.

    Google Scholar

    [32] BLASIO F V D,BREIEN H,ELVERHI A. Modelling a cohesive-frictional debris flow:an experimental,theoretical,and field-based study[J]. Earth Surface Processes & Landforms,2010,36(6):753-766.

    Google Scholar

    [33] PANIZZO A,GIROLAMO P D,PETACCIA A. Forecasting impulse waves generated by subaerial landslides[J]. Journal of Geophysical Research Oceans,2005,110(12):58-70.

    Google Scholar

    [34] MARR J G,HARFF P A,SHANMUGAM G,et al. Experiments on subaqueous sandy gravity flows:the role of clay and water content in flow dynamics and depositional structures[J]. Geological Society of America Bulletin,2001,113(11):1377-1386.

    Google Scholar

    [35] 李小超,常留红,李凌,等. 水槽混合石料群抛试验[J]. 水利水电科技进展,2017(6):80-98.

    Google Scholar

    [36] 王家生,陈立,刘林,等. 黏性泥沙分层运动特征的试验研究[J]. 水科学进展,2008(01):15-20.

    Google Scholar

    [37] WHITTAKER C,NOKES R,DAVIDSON M. Tsunami forcing by a low froude number landslide[J]. Environmental Fluid Mechanics,2015,15(6):1215-1239.

    Google Scholar

    [38] WANG Q,WANG Y,HU X Y,et al. Marine rock physical flume experiment:the method of seafloor shallow sediment recognition by ultrasonic physical attributes[J]. Journal of Applied Geophysics,2015(115):197-205.

    Google Scholar

    [39] ZHANG M,ZHANG W,HUANG Y L,et al. Failure mechanism of submarine slopes based on the wave flume test[J]. Natural Hazards,2019(2):27-34.

    Google Scholar

    [40] ISHIMARU M,KAWAI T. Basic study on the evaluation of seismic stability of rock slope using centrifuge model test[J]. Journal of Japan Society of Civil Engineers,2011,67(1):36-49.

    Google Scholar

    [41] BRENNAN A J,MADABHUSHI S P G. Amplification of seismic accelerations at slope crests[J]. Revue Canadienne De Géotechnique,2009,46(5):585-594.

    Google Scholar

    [42] GAUDIN C,WHITE D J. New centrifuge modelling techniques for investigating seabed pipeline behaviour[J]. Earth Science Reviews,2009,56(4):78-87.

    Google Scholar

    [43] 蒋金阳. 软硬互层边坡倾倒变形破坏特征及支护效果的大型离心机试验研究[D]. 成都: 成都理工大学, 2017.

    Google Scholar

    [44] ADAMIDIS O,MADABHUSHI G S P. Use of viscous pore fluids in dynamic centrifuge modelling[J]. International Journal of Physical Modelling in Geotechnics,2015,15(3):141-149.

    Google Scholar

    [45] ACOSTA E A,TIBANA S,JR F S. Centrifuge modeling of hydroplaning in submarine slopes[J]. Ocean Engineering,2017,129:451-458.

    Google Scholar

    [46] YAN K M,ZHANG J J,CHENG Q G,et al. Earthquake loading response of a slope with an inclined weak intercalated layer using centrifuge modeling[J]. Bulletin of Engineering Geology and the Environment,2018(13):72-85.

    Google Scholar

    [47] LEE M G,CHO H I,KIM J H,et al. Development of seismic cpt for evaluating in-flight soil properties in centrifuge model test[J]. Ksce Journal of Civil Engineering,2017,22(9):1-11.

    Google Scholar

    [48] HARBITZ C B. Model simulations of tsunamis generated by the storegga slides[J]. Ocean Engineering,1992,105(1/4):1-21.

    Google Scholar

    [49] GRILLI S T,VOGELMANN S,WATTS P. Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides[J]. Engineering Analysis with Boundary Elements,2002,26(4):301-313.

    Google Scholar

    [50] FUHRMAN D R,MADSEN P A. Tsunami generation,propagation,and run-up with a high-order boussinesq model[J]. Coastal Engineering,2008,56(7):747-758.

    Google Scholar

    [51] HORRILLO J,WOOD A,KIM G B,et al. A simplified 3-D navier-stokes numerical model for landslide-tsunami:application to the Gulf of Mexico[J]. Journal of Geophysical Research Oceans,2019,118(12):112-132.

    Google Scholar

    [52] PAKOKSUNG K,SUPPASRI A,IMAMURA F,et al. Simulation of the submarine landslide Tsunami on 28 September 2018 in Palu Bay,Sulawesi Island,Indonesia,using a Two-Layer Model[J]. Pure and Applied Geophysics,2019,176(1):3233-3250.

    Google Scholar

    [53] IMRAN J,HARFF P,PARKER G. A numerical model of submarine debris flow with graphical user interface[J]. Computers & Geosciences,2015,27(6):717-729.

    Google Scholar

    [54] ATAIE-ASHTIANI B,SHOBEYRI G. Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics[J]. International Journal for Numerical Methods in Fluids,2008,56(2):209-232.

    Google Scholar

    [55] 杨林青. 海底斜坡稳定性及滑移影响因素分析[D]. 大连: 大连理工大学, 2012.

    Google Scholar

    [56] SAUTHIER C,LABIOUSE V,PIRULLI M,et al. Numerical simulation of gravel unconstrained flow experiments:a comparison between dan-3D and rash-3D codes[J]. Marine Geology,2010,32(42):39-35.

    Google Scholar

    [57] GIACHETTI T,PARIS R L,KELFOUN K,et al. Numerical modelling of the tsunami triggered by the güìmar debris avalanche,tenerife (Canary Islands):comparison with field-based data[J]. Marine Geology,2011,284(1/4):189-202.

    Google Scholar

    [58] ABADIE S M,HARRIS J C,GRILLI S T,et al. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja volcano (la Palma,Canary islands):tsunami source and near field effects[J]. Journal of Geophysical Research Oceans,2012,117(5):85-96.

    Google Scholar

    [59] RASTGOFTAR E,SOLTANPOUR M. Study and numerical modeling of 1945 makran tsunami due to a probable submarine landslide[J]. Natural Hazards,2016,83(2):1-17.

    Google Scholar

    [60] PUZRIN A M, RUSHTON D, MACKENZIE B, et al. Submarine landslides—stability analysis and risk assessment for offshore developments[M]. Zurich: John Wiley and Sons, 2017.

    Google Scholar

    [61] MOUNTJOY J, MICALLEF A. Submarine landslides[M]. New Zealand: Submarine Geomorphology, 2018.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(1284) PDF downloads(32) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint