2019 Vol. 35, No. 8
Article Contents

CUI Min, WANG Peng, QI Peng. NUMERICAL MODELING OF STRUCTURES OF HUAGANG PERIOD IN THE MIDDLE-NORTHERN XIHU SAG AND ITS IMPLICATIONS FOR PROVENANCE[J]. Marine Geology Frontiers, 2019, 35(8): 27-33. doi: 10.16028/j.1009-2722.2019.08004
Citation: CUI Min, WANG Peng, QI Peng. NUMERICAL MODELING OF STRUCTURES OF HUAGANG PERIOD IN THE MIDDLE-NORTHERN XIHU SAG AND ITS IMPLICATIONS FOR PROVENANCE[J]. Marine Geology Frontiers, 2019, 35(8): 27-33. doi: 10.16028/j.1009-2722.2019.08004

NUMERICAL MODELING OF STRUCTURES OF HUAGANG PERIOD IN THE MIDDLE-NORTHERN XIHU SAG AND ITS IMPLICATIONS FOR PROVENANCE

  • Based on regional geological research, by means of the kinematics parameters extracted from balanced sections and tectonic stress simulation, tectonic deformation and depositional provenances of the Huagang Period in the middle-north and east parts of the Xihu Sag are studied in this paper. The results demonstrate that the EW compression was the strongest in the Yuquan period of Miocene in the Xihu Sag, followed by the Huagang period of Oligocene. The horizontal shortening rate gradually increased from south to north during the Huagang period. There was a huge exposed basement area in the Fujiang Sag, which provided enormous sediments to the Xihu Sag. The Huagang Formation is widely distributed in the Diaoyu Islands folded-uplift belt. Its thickness gradually decreased from south to north, and the denudation thickness, recovered by the geological trend method, reached 1 700 m in the north. Up to the Huagang period, the Okinawa Trough has not yet formed.The Diaoyu Island uplift belt was thus directly next to the outer uplift of the East China Sea Shelf and received sediment supplies from the east. The numerical simulation results provided a tectonic basis for recognizing the provenances on the north and east sides of Xihu Sag. Axial drainage systems of multiple provenances dominated the Xihu Sag during the period of Huagang Formation.

  • 加载中
  • [1] 张敏强, 钟志洪, 夏斌, 等.东海西湖凹陷中南部晚中新世构造反转与油气运聚[J].中国海上油气, 2005, 17(2):73-79. doi: 10.3969/j.issn.1673-1506.2005.02.001

    CrossRef Google Scholar

    [2] 张建培, 徐发, 钟韬, 等.东海陆架盆地西湖凹陷平湖组-花港组层序地层模式及沉积演化[J].海洋地质与第四纪地质, 2012, 21(1):35-41.

    Google Scholar

    [3] 张国华.西湖凹陷高压形成机制及其对油气成藏的影响[J].中国海上油气, 2013, 25(2):1-8.

    Google Scholar

    [4] 赵红格, 刘池洋.物源分析方法及研究进展[J].沉积学报, 2003, 21(3):409-415. doi: 10.3969/j.issn.1000-0550.2003.03.007

    CrossRef Google Scholar

    [5] 徐亚军, 杜远生, 杨江海.沉积物物源分析研究进展[J].地质科技情报, 2007, 114(3):26-32. doi: 10.3969/j.issn.1000-7849.2007.03.005

    CrossRef Google Scholar

    [6] 杨仁超, 李进步, 樊爱萍, 等.陆源沉积岩物源分析研究进展与发展趋势[J].沉积学报, 2013, 31(1): 99-107.

    Google Scholar

    [7] Busby C, Azor A. Dynamic Relationship between Subsidence, Sedimentation, and Unconformities in Mid-Cretaceous, Shallow-Marine Strata of the Western Canada Foreland Basin: Links to Cordilleran Tectonics[M]//Tectonics of Sedimentary Basins: Recent Advances. John Wiley & Sons, Ltd., 2012:177-182.

    Google Scholar

    [8] 张田, 张建培, 张绍亮, 等.有限元数值模拟技术在西湖凹陷中央反转构造带形成机制研究中的应用[J].海洋石油, 2012, 32(4):11-16. doi: 10.3969/j.issn.1008-2336.2012.04.011

    CrossRef Google Scholar

    [9] Rossland A, Escalona A, Rolfsen R. Permian-Holocene tectonostratigraphic evolution of the Mandal High, Central Graben, North Sea[J]. AAPG Bulletin, 2013, 97(3):923-957.

    Google Scholar

    [10] Lunt I A, Smith G H S, Best J L, et al. Deposits of the sandy braided South Saskatchewan River: Implications for the use of modern analogs in reconstructing channel dimensions in reservoir characterization[J]. AAPG Bulletin, 2013, 97(4):553-576. doi: 10.1306/09251211152

    CrossRef Google Scholar

    [11] Miall A D, The Geology of Stratigraphic Sequences, second edition[M]. Berlin: Springer-Verlag, 2010:308-325.

    Google Scholar

    [12] 刘卫红, 林畅松, 郭泽清, 等.东海陆架盆地西湖凹陷新生代反转构造样式及其形成机制初探[J].地质科学, 2009, 44(1):74-87. doi: 10.3321/j.issn:0563-5020.2009.01.007

    CrossRef Google Scholar

    [13] 张建培, 张涛, 刘景彦, 等.西湖凹陷反转构造分布与样式[J].海洋石油, 2008, 28(4):14-20. doi: 10.3969/j.issn.1008-2336.2008.04.003

    CrossRef Google Scholar

    [14] 张敏强, 徐发, 张建培, 等.西湖凹陷裂陷期构造样式及其对沉积充填的控制作用[J].海洋地质与第四纪地质, 2011, 31(5):67-72.

    Google Scholar

    [15] 张远兴, 叶加仁, 苏克露, 等.东海西湖凹陷沉降史与构造演化[J].大地构造与成矿学, 2009, 33(2): 215-223. doi: 10.3969/j.issn.1001-1552.2009.02.004

    CrossRef Google Scholar

    [16] 张绍亮, 秦兰芝, 余逸凡, 等.西湖凹陷渐新统花港组下段沉积相特征及模式[J].石油地质与工程, 2014, 28(2):5-8, 145. doi: 10.3969/j.issn.1673-8217.2014.02.002

    CrossRef Google Scholar

    [17] 郭真, 刘池洋, 田建锋.东海盆地西湖凹陷反转构造特征及其形成的动力环境[J].地学前缘, 2015, 22(3):59-67.

    Google Scholar

    [18] 郭真, 刘池洋, 田建锋.东海陆架盆地龙井运动构造影响及其发育背景[J].西北大学学报(自然科学版), 2015, 45(5):801-810.

    Google Scholar

    [19] Cukur D, Horozal S, Kim D C, et al. Seismic stratigraphy and structural analysis of the northern East China Sea Shelf Basin interpreted from multi-channel seismic reflection data and cross-section restoration [J]. Marine and Petroleum Geology, 2011, 28(5):1003-1022. doi: 10.1016/j.marpetgeo.2011.01.002

    CrossRef Google Scholar

    [20] Lee G H, Kim B Y, Shin K S, et al. Geologic evolution and aspects of the petroleum geology of the northern East China Sea shelf basin[J]. AAPG Bulletin, 2006, 90(2):237-260. doi: 10.1306/08010505020

    CrossRef Google Scholar

    [21] 王子煜, 张明利.东海西湖凹陷新生界主要不整合面地层剥蚀厚度恢复[J].地质论评, 2005, 51(3):309-318. doi: 10.3321/j.issn:0371-5736.2005.03.011

    CrossRef Google Scholar

    [22] 郝乐伟, 刘畅, 王琪, 等.西湖凹陷古近系花港组物源区特征分析[J].天然气地球科学, 2011, 22(2):315-323.

    Google Scholar

    [23] 张建培, 唐贤君, 张田, 等.平衡剖面技术在东海西湖凹陷构造演化研究中的应用[J].海洋地质前沿, 2012, 28(8):31-37.

    Google Scholar

    [24] 胡望水, 柴浩栋, 李瑞升, 等.平衡剖面技术对东海西湖凹陷正反转构造及其成藏控制的研究[J].特种油气藏, 2010, 17(1):15-19, 121. doi: 10.3969/j.issn.1006-6535.2010.01.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(721) PDF downloads(44) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint