Citation: | LU Kai, QIN Yachao, WANG Zhongbo, HUANG Long, LI Guangxue. HEAVY MINERAL PROVINCES OF THE SURFACE SEDIMENTS IN CENTRAL-SOUTHERN EAST CHINA SEA AND IMPLICATIONS FOR PROVENANCE[J]. Marine Geology Frontiers, 2019, 35(8): 20-26. doi: 10.16028/j.1009-2722.2019.08003 |
More than 40 species of heavy minerals and a small amount of lithic and weathered fragments are found in the surface sediments of the middle-southern East China Sea.Sediment sources, depositional environments and the main controlling factors were analyzed and discussed. High percentages of opaque heavy minerals mainly occur on the outer shelf of the East China Sea at water depth deeper than 100 m, while the content of opaque heavy minerals in the Zhejiang-Fujian coastal areas is very low. The content of stable heavy minerals depends upon the distance to the coast, and from the inner to the outer shelf, the content gradually increases. Micas and authigenic pyrite are found concentrated in the inner shelf of Zhejiang-Fujian coastal areas, indicating a rather weak hydrodynamic condition and reducing environment. Cluster analysis suggests that the study area can be roughly divided into two zones. The zone I includes the Zhejiang-Fujian coastal areas and the central and western Taiwan Strait with water depth less than 60 m. The sediments are mainly transported by the southward coastal currents. The zone II mainly includes the middle and outer continental shelf, continental slope and part of the Okinawa Trough in the East China Sea with water depth deeper than 80 m. The sediments are mainly derived from the East Asian continent during the low sea level period of Late Pleistocene.
[1] | 陈丽蓉.中国海沉积矿物学[M].北京:海洋出版社, 2008. |
[2] | 李艳, 李安春, 黄朋.大连湾近海表层沉积物重矿物组合分布特征及其物源环境指示[J].海洋地质与第四纪地质, 2011, 31(6): 13-20. |
[3] | 董江, 李安春, 徐方建, 等.东海内陆架EC2005孔重矿物组合特征及其物源指示意义[J].海洋与湖沼, 2015, 46(6): 1292-1303. |
[4] | Liu J P, Liu C S, Xu K H, et al. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait [J]. Marine Geology, 2008, 256(1/4): 65-76. |
[5] | Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3/4): 208-224. |
[6] | Xu F, Li A, Li T, et al. Rare earth element geochemistry in the inner shelf of the East China Sea and its implication to sediment provenances[J]. Journal of Rare Earths, 2011, 29(7): 702-709. doi: 10.1016/S1002-0721(10)60526-1 |
[7] | 徐方建, 李安春, 肖尚斌, 等.末次冰消期以来东海内陆架古环境演化[J].沉积学报, 2009, 27(1): 118-127. |
[8] | 陈静, 王哲, 王张华, 等.长江三角洲东西部晚新生代地层中的重矿物差异及其物源意义[J].第四纪研究, 2007, 27(5): 700-708. doi: 10.3321/j.issn:1001-7410.2007.05.011 |
[9] | 陈丽蓉, 许文强, 申顺喜.东海沉积物的矿物组合及其分布特征的研究[A].中国科学院海洋研究所地质研究室, 黄东海地质[M].北京:科学出版社, 1982: 82-97. |
[10] | 陈丽蓉, 范守志, 毛彦平.东海沉积物中重矿物组合的统计分析[J].海洋科学集刊, 1984, 21: 291-296. |
[11] | 林振宏, 吕亚男, 高学敏.冲绳海槽中部表层沉积物的重矿物分布和来源[J].青岛海洋大学学报, 1996, 26(3): 361-368. |
[12] | 王昆山, 石学法, 林振宏.南黄海和东海北部陆架重矿物组合分区及来源[J].海洋科学进展, 2003, 21(1): 32-40. |
[13] | 金秉福, 林振宏, 时振波, 等.东海外陆架晚更新世沉积物中的有用重矿物及其资源潜力[J].古地理学报, 2004, 6(3): 372-379. doi: 10.3969/j.issn.1671-1505.2004.03.012 |
[14] | 鲍根德, 汪依凡.东海陆架沉积物中自生硫化铁的初步研究[J].海洋湖沼通报, 1983, 4: 52-58. |
[15] | 王先兰, 马克俭, 陈建林, 等.东海海底表层沉积物中的碎屑矿物及地质意义[J].海洋地质与第四纪地质, 1984, 4(3): 43-55. |
[16] | 王昆山, 石学法, 李珍, 等.东海DGK9617孔岩心重矿物及自生黄铁矿记录[J].海洋地质与第四纪地质, 2005, 25(4): 41-45. |
[17] | 秦蕴珊, 赵一阳, 陈丽蓉, 等.东海地质[M].北京:科学出版社, 1987. |
[18] | Dou Y, Yang S, Liu Z, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: Constraints from rare earth element compositions[J]. Marine Geology, 2010, 275(1/4): 212-220. |
[19] | Jiang F, Li A, Li T. Sediment pathway of the East China Sea inferred from an R-mode factor analysis of surface sediments in the Okinawa Trough[J]. Quaternary International, 2011, 230(1/2): 13-20. |
[20] | Xu Z, Li T, Chang F, et al. Sediment provenance discrimination in northern Okinawa Trough during the last 24 ka and paleoenvironmental implication: rare earth elements evidence [J]. Journal of Rare Earths, 2012, 30(11): 1184-1190. doi: 10.1016/S1002-0721(12)60202-6 |
[21] | Liu X, Fike D, Li A, et al. Pyrite sulfur isotopes constrained by sedimentation rates: Evidence from sediments on the East China Sea inner shelf since the late Pleistocene [J]. Chemical Geology, 2019, 505: 66-75. doi: 10.1016/j.chemgeo.2018.12.014 |
[22] | Shawar L, Halevy I, Said-Ahmad W, et al. Dynamics of pyrite formation and organic matter sulfurization in organic-rich carbonate sediments [J]. Geochimica et Cosmochimica Acta, 2018, 241: 219-239. doi: 10.1016/j.gca.2018.08.048 |
[23] | 杨玉盛, 何宗明, 林光耀, 等.不同治理措施对闽东南沿海侵蚀性赤红壤肥力影响的研究[J].植物生态学报, 1998, 22(3): 281-288. doi: 10.3321/j.issn:1005-264X.1998.03.013 |
[24] | 张富元, 王秀昌.东海表层沉积物中重矿物聚类分析及其动力分布特征[J].应用海洋学学报, 1984, 3(1): 68-77. |
Map of the central-southern East China Sea, showing sampling locations
Geographical distributions of heavy minerals (a), opaques (b)and stable heavy minerals (c) in the bottom sediments of the central-southern East China Sea
Distribution patterns of hornblende (a), actinolite/tremolite (b), epidote (c), mica (d), garnet (e), authigenic pyrite (f), ilmenite (g)and limonite (h) in the bottom sediments of the central-southern East China Sea
Heavy-mineral provinces I and II of the bottom sediments in the central-southern East China Sea