2019 Vol. 35, No. 5
Article Contents

LI Dan, KANG Hongquan, HAO Lihua, CAO Xiangyang, LIU Xiaolong, JIA Jianzhong. ORGANIC FACIES AND SPATIAL DISTRIBUTION OF TRANSITIONAL MARINE SOURCE ROCKS IN WESTERN SOUTH AFRICAN COASTAL BASIN[J]. Marine Geology Frontiers, 2019, 35(5): 21-30. doi: 10.16028/j.1009-2722.2019.05003
Citation: LI Dan, KANG Hongquan, HAO Lihua, CAO Xiangyang, LIU Xiaolong, JIA Jianzhong. ORGANIC FACIES AND SPATIAL DISTRIBUTION OF TRANSITIONAL MARINE SOURCE ROCKS IN WESTERN SOUTH AFRICAN COASTAL BASIN[J]. Marine Geology Frontiers, 2019, 35(5): 21-30. doi: 10.16028/j.1009-2722.2019.05003

ORGANIC FACIES AND SPATIAL DISTRIBUTION OF TRANSITIONAL MARINE SOURCE ROCKS IN WESTERN SOUTH AFRICAN COASTAL BASIN

  • Marine source rocks contribute a lot to oil and gas generation in the world and are widely distributed on the earth. So far, the research on marine source rocks mainly focuses on its hydrocarbon generation mechanism, but lacks the research on its identification, prediction and evaluation technology in particular in the exploration and production stage of an oil field. In order to establish a set of feasible technical methods for marine source rock evaluation by organic facies analysis, this paper selected the Western South African Coastal Basin as a case. Comprehensive organic facies analysis of the main marine source rocks has been carried out by integrated analysis of sedimentary facies, paleoecologicalfacies, organic geochemical facies and seismic facies, or so called "four facies integrattion", and then the main marine source rock in this basin is systematically evaluated. The marine source rock consists of mixed terrestrial and marine organic matters. It can be further subdivided into four organic facies zones from the land to the sea, i.e.the coastal terrestrial organic facies A, the inner shallow sea mixed organic facies B, the outer shallow sea mixed organic facies C, and the upper slope autochthonous organic facies D. In a plane view, the distribution of hydrocarbon is characterized by a pattern of "inner part gas-prone and outer part oil-prone" in the basin.

  • 加载中
  • [1] 蔡勋育, 韦宝东, 赵培荣.南方海相烃源岩特征分析[J].天然气工业, 2005, 25(3):20-22.

    Google Scholar

    [2] 秦建中.中国烃源岩[M].北京:科学出版社, 2005.

    Google Scholar

    [3] 腾格尔.中国海相烃源岩研究进展及面临的挑战[J].天然气工业, 2011, 31(1):20-25.

    Google Scholar

    [4] 张水昌, 张宝民, 边立曾, 等.中国海相烃源岩发育控制因素[J].地学前缘, 2005, 12(3):39-48.

    Google Scholar

    [5] 陈建平, 梁狄刚, 张水昌, 等.中国古生界海相烃源岩生烃潜力评价标准与方法[J].地质学报, 2012, 86(7):1132-1142.

    Google Scholar

    [6] 梁狄刚, 郭彤楼, 陈建平, 等.中国南方海相生烃成藏研究的若干新进展(一)南方四套区域性海相烃源岩的分布[J].海相油气地质, 2008, 13(2):1-16.

    Google Scholar

    [7] 刘光鼎, 杨长春, 王清晨.有利于海相烃源岩形成的物理作用[J].地质科学, 2011, 46(1):1-4.

    Google Scholar

    [8] 许化政, 王传刚.海相烃源岩发育环境与岩石的沉积序列——以鄂尔多斯盆地为例[J].石油学报, 2010, 31(1):25-30.

    Google Scholar

    [9] 郝芳, 陈建渝, 孙永传, 等.有机相研究及其在盆地分析中的应用[J].沉积学报, 1994, 12(4):77-86.

    Google Scholar

    [10] 郝黎明, 邵龙义.基于层序地层格架的有机相研究进展[J].地质科技情报, 2000, 19(4):60-64.

    Google Scholar

    [11] 彭立才, 杨慧珠, 刘兰桂, 等.柴达木盆地北缘侏罗系烃源岩沉积有机相划分及评价[J].石油与天然气地质, 2001, 22(2):178-181.

    Google Scholar

    [12] 李君文, 陈洪德, 田景春, 等.沉积有机相的研究现状及其应用[J].沉积与特提斯地质, 2004, 24(2):96-100.

    Google Scholar

    [13] 袁东山, 张枝焕, 曾艳涛, 等.昌潍坳陷潍北凹陷深层孔二段烃源岩有机相[J].石油天然气学报, 2006, 28(4):229-231.

    Google Scholar

    [14] 李华东, 王荣福.有机相在油气源岩与油气评价中的作用——以下扬子区二叠系为例[J].石油实验地质, 1993, 15(2):201-212.

    Google Scholar

    [15] Tribovillard N, Bialkowski A, Tyson R V, et al. Organic facies variation in the late Kimmeridgian of the Boulonnais area (northernmost France)[J]. Marine and Petroleum Geology, 2006, 18(3):371-389.

    Google Scholar

    [16] Habib D, Miller J A. Dinoflagellate species and organic facies evidence of marine transgression and regression in the atlantic coastal plain[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1989, 74(1):23-47.

    Google Scholar

    [17] Requejo A G, Wielchowsky C C, Klosterman M J, et al. Geochemical characterization of lithofacies and organic facies in Cretaceous organic-rich rocks from Trinidad, East Venezuela Basin[J]. Organic Geochemistry, 1994, 22(3/5):441-459.

    Google Scholar

    [18] Richard B, Steven L, Roger S. Source rock, maturity data indicate potential off Namibia[J]. Oil and Gas Journal, 1998, 96(32): 84-89.

    Google Scholar

    [19] 邓荣敬, 邓运华, 于水.西非海岸盆地群油气勘探成果及勘探潜力分析[J].海洋石油, 2008, 3(28):11-19.

    Google Scholar

    [20] 郑应钊.西非海岸盆地带油气地质特征与勘探潜力分析[D].北京: 中国地质大学(北京), 2012.

    Google Scholar

    [21] Nuernberg D, Mueller R D. The tectonic evolution of the South Atlantic from Late Jurassic to present[J]. Tectonophysics, 1991, 191(191):27-53.

    Google Scholar

    [22] Thomas R J, Veh M W V, Mccourt S. The tectonic evolution of southern Africa: an overview [J]. Journal of African Earth Sciences, 1993, 16(1/2):5-24.

    Google Scholar

    [23] Granado P, De Vera J, Mcclay K R. Tectonostratigraphic evolution of the Orange Basin, SW Africa[J]. Trabajos de Geología, 2009, 29: 321-328.

    Google Scholar

    [24] Hirsch K K, Scheck-Wenderoth M, Wees J D V, et al. Tectonic subsidence history and thermal evolution of the Orange Basin[J]. Marine and Petroleum Geology, 2010, 27(3):565-584.

    Google Scholar

    [25] Sandersen A. A Palynological Investigation of the Offshore Cretaceous Sequence on the South-West Coast of South Africa [D]. Johannesburg: University of the Witwatersrand, 2006.

    Google Scholar

    [26] Vera J D, Granado P, Mcclay K. Structural evolution of the Orange Basin gravity-driven system, offshore Namibia[J]. Marine and Petroleum Geology, 2010, 27(1):223-237.

    Google Scholar

    [27] Rouby D, Bonnet S, Guillocheau F, et al. Sediment supply to the Orange sedimentary system over the last 150 My: an evaluation from sedimentation/denudation balance[J]. Marine and Petroleum Geology, 2009, 26(6):782-794.

    Google Scholar

    [28] Franke D. Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins [J]. Marine and Petroleum Geology, 2012, 11(3):63-87.

    Google Scholar

    [29] Klemperer S. Characteristics of volcanic rifted margins[J]. Special Paper of the Geological Society of America, 2002, 362:1-14.

    Google Scholar

    [30] Jackson M P A, Cramez C, Fonck J M. Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: implications for salt tectonics and source rocks [J]. Marine & Petroleum Geology, 2000, 17(4):477-498.

    Google Scholar

    [31] Douglas A P, David V D S, Rolando di P, et al. Tectonically induced adjustment of passive-margin accommodation space: influence on the hydrocarbon potential of the Orange Basin, South Africa [J]. AAPG Bulletin, 2010, 92(5): 589-609.

    Google Scholar

    [32] Stow D A V. South Atlantic organic-rich sediments: facies, processes and environments of deposition[J]. Geological Society London Special Publications, 1987, 26(1):287-299.

    Google Scholar

    [33] Akinlua A, Adekola S A, Swakamisa O, et al. Trace element characterisation of Cretaceous Orange Basin hydrocarbon source rocks [J]. Applied Geochemistry, 2010, 25(10):1587-1595.

    Google Scholar

    [34] Spuy V D D. Aptian source rocks in some South African Cretaceous basins [J]. Geological Society, London, Special Publications, 2013, 207(1):185-202.

    Google Scholar

    [35] Richard B, Steve L, Roger S. Source rock, maturity data indicate potential off Namibia [J]. Oil and Gas Journal, 1998, 96(32):1-10.

    Google Scholar

    [36] Zimmerman H B, Boersma A, Mccoy F W. Carbonaceous sediments and palaeoenvironment of the Cretaceous South Atlantic Ocean [J]. Geological Society London Special Publications, 1987, 26(1):271-286.

    Google Scholar

    [37] Scotese C R. Atlas of Earth History [M]. Arlington: University of Texas, 2001.

    Google Scholar

    [38] McCoy F W, Zimmerman M B. A History of Sediment Lithofacies in the South Atlantic Ocean[C]// Init.Repts. DSDP 39. Washington: U.S. Govt. Printing Office, 1977: 1047-1079.

    Google Scholar

    [39] Jacquin T, De Graciansky P C. Cyclic fluctuations of anoxia during Cretaceous time in the South Atlantic Ocean [J]. Marine and Petroleum Geology, 1988, 5(4):359-369.

    Google Scholar

    [40] Tissot B, Demaison G, Masson P, et al.Paleoenvironment and petroleum potential of middle Cretaceous black shales in Atlantic basins [J]. American Association of Petroleum Geologists Bulletin, 1980, 64(12): 2051-2063.

    Google Scholar

    [41] 黄永建, 王成善, 顾健.白垩纪大洋缺氧事件:研究进展与未来展望[J].地质学报, 2008, 82(1):21-30.

    Google Scholar

    [42] 辛建荣.缺氧事件及其地质意义[J].地质科技情报, 1986, 5(4):35-41.

    Google Scholar

    [43] Dingle R V. Walvis Ridge barrier: its influence on palaeoenvironments and source rock generation deduced from ostracod distributions in the early South Atlantic Ocean [J]. Geological Society, 1999, 153(1):293-302.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(1)

Article Metrics

Article views(857) PDF downloads(16) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint