2019 Vol. 35, No. 5
Article Contents

JIA Jianzhong, KANG Hongquan, LIU Xiaolong, LI Dan, FENG Xin. CLIMATE EVENTS AND THEIR BEARING ON TURBIDITE CHANNELS OF THE CONGO FAN[J]. Marine Geology Frontiers, 2019, 35(5): 2-10. doi: 10.16028/j.1009-2722.2019.05001
Citation: JIA Jianzhong, KANG Hongquan, LIU Xiaolong, LI Dan, FENG Xin. CLIMATE EVENTS AND THEIR BEARING ON TURBIDITE CHANNELS OF THE CONGO FAN[J]. Marine Geology Frontiers, 2019, 35(5): 2-10. doi: 10.16028/j.1009-2722.2019.05001

CLIMATE EVENTS AND THEIR BEARING ON TURBIDITE CHANNELS OF THE CONGO FAN

  • The Congo Fan is a huge deep water fan with high sedimentation rate since Oligocene, decorated by widely developed turbidite channels, which provided excellent geologic conditions for hydrocarbon to accumulate. To recognize the key controlling factors and distribution patterns of these channels, it is significant to establish the stratigraphic frameworks by dating sediments, dividing evolutionary phases and defining isochronous geological events. Based on a comprehensive analysis of logging, seismic and palaeontological data, two 2nd order and eight 3rd order sequences have been identified. The age of each sequence boundary is dated by biostratigraphic evidence and global sea-level cyclicities. Under the sequence stratigraphic framework, three evolutionary periods of turbidite channels have been recognized: the rapid filling period of Late Oligocene, the stable depositional period of Early-Middle Miocene, and the massive channels developing period of Late Miocene. The three periods are closely related to the three uplifting events widely observed in the West African coastal basins. In addition, palynological assemblages suggest that climate changed very frequently in Miocene. And the massive channels developing period is in response to the cooling events when the sea-level dropped rapidly. Therefore, the development of turbidite channels is mainly controlled by both the tectonic and cooling events in West Africa. They are supplementary to each other and have joint effect on the development of channels.

  • 加载中
  • [1] 邓荣敬, 邓运华, 于水, 等.尼日尔三角洲盆地油气地质与成藏特征[J].石油勘探与开发, 2008, 35(6):755-762.

    Google Scholar

    [2] 赵红岩, 陶维祥, 于水, 等.下刚果盆地深水区油气成藏要素特征及成藏模式研究[J].中国石油勘探, 2013, 18 (1): 75-79.

    Google Scholar

    [3] 张树林, 邓运华.下刚果盆地油气勘探策略[J].海洋地质动态, 2009, 25(9):24-29.

    Google Scholar

    [4] Kane I A, McCaffrey W D, Peakall J. Controls on sinuosity evolution within submarine channels[J]. Geology, 2008, 36(4): 287-290.

    Google Scholar

    [5] 张文彪, 段太忠, 刘志强, 等.深水浊积水道多点地质统计模拟——以安哥拉Plutonio油田为例[J].石油勘探与开发, 2016, 43(3):403-410.

    Google Scholar

    [6] 张文彪, 陈志海, 刘志强, 等.深水水道形态定量分析及沉积模拟——以西非Gengibre油田为例[J].石油学报, 2015, 36(1):41-49.

    Google Scholar

    [7] 赵晓明, 吴胜和, 刘丽.西非陆坡区深水复合水道沉积构型模式[J].中国石油大学学报(自然科学版), 2012, 36(6): 1-12.

    Google Scholar

    [8] 熊浩浩, 王振奇, 付欢, 等.西非下刚果盆地刚果扇A区块中新统深水水道分类及演化[J].海相油气地质, 2014, 19(2): 64-69.

    Google Scholar

    [9] 谢清惠, 邓宏文, 郭佳.西非下刚果盆地深水曲流水道的地震响应特征与演化模式分析[J].石油物探, 2013, 52(6):655-662.

    Google Scholar

    [10] 王振奇, 肖洁, 龙长俊, 等.下刚果盆地A区块中新统深水水道沉积特征[J].海洋地质前沿, 2013, 29(3):5-12.

    Google Scholar

    [11] Lu H, Fulthorpe C S, Mann P. Three-dimensional architecture of shelf-building sediment drifts in the offshore Canterbury Basin, New Zealand[J]. Marine Geology, 2003, 193: 19-47.

    Google Scholar

    [12] Eschard R. Geological factors controlling sediment transport from platform to deep basin: a review [J]. Marine and Petroleum Geology, 2001, 18(4): 487-490.

    Google Scholar

    [13] 张文彪, 段太忠, 刘志强, 等.深水浊积水道沉积构型模式及沉积演化:以西非M油田为例[J].地球科学, 2017, 42(2):273-285.

    Google Scholar

    [14] 王琳霖, 王振奇, 肖鹏.下刚果盆地A区块中新统深水沉积体系特征[J].石油与天然气地质, 2015, 36(6):963-974.

    Google Scholar

    [15] Wellner R W, Bartek L R. The effect of sea level, climate, and shelf physiography on the development of incised-valley complexes: a modern example from the East China Sea[J]. Journal of Sedimentary Research, 2003, 73: 926-940.

    Google Scholar

    [16] 李华, 何幼斌, 王振奇.深水高弯度水道—堤岸沉积体系形态及特征[J].古地理学报, 2011, 13(2):139-149.

    Google Scholar

    [17] 马宏霞, 孙辉, 邵大力, 等缅甸若开盆地上中新统-上新统深水沉积层序地层划分及控制因素[J].石油与天然气地质, 2015, 36(1):136-141.

    Google Scholar

    [18] 蔡露露, 刘春成, 吕明, 等.西非下刚果盆地深水水道发育特征及沉积储层预测[J].中国海上油气, 2016, 28(2):60-70.

    Google Scholar

    [19] 张笑, 王振奇, 李士涛, 等.下刚果盆地深水沉积中新统层序划分及其控制因素[J].海洋地质前沿, 2011, 27(10):27-33.

    Google Scholar

    [20] 刘新颖, 于水, 陶维祥, 等.刚果扇上中新世深水水道充填结构及演化特征[J].地球科学(中国地质大学学报), 2012, 37(1), 105-112.

    Google Scholar

    [21] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235: 1156-1167.

    Google Scholar

    [22] Vail P R, Mitchum R M Jr, Thompson Ⅲ S. Seismic stratigraphy and global changes of sea level: Part 3, Relative changes of sea level from coastal onlap: Section 2, Application of seismic reflection configuration to stratigraphic interpretation[C]//Seismic stratigraphy: applications to hydrocarbon exploration. AAPG Memoir 26, 1977: 63-81.

    Google Scholar

    [23] Anka Z, Séranne M, Scheck-Wenderoth M, et al. The long-term evolution of the Congo deep-sea fan: a basin-wide view of the interaction between a giant submarine fan and a mature passive margin (Zai Ango project) [J]. Tectonophysics, 2009, 470:42-56.

    Google Scholar

    [24] 范洪耀, 陶维祥, 于水, 等.下刚果盆地油气成藏条件及勘探潜力分析[J].海洋石油, 2012, 32(2):16-20.

    Google Scholar

    [25] 乔博, 张昌民, 李少华, 等.珠江口盆地白云凹陷中新世水道发育的主控因素[J].现代地质, 2016, 30(1):200-208.

    Google Scholar

    [26] Gardner M H, Borer J M, Melick J J, et al. Stratigraphic process-response model for submarine channels and related features from studies of Permian Brushy Canyon outcrops, West Texas[J]. Marine & Petroleum Geology, 2003, 20 (6): 757-787.

    Google Scholar

    [27] Wellner R W, Bartek L R. The effect of sea level, climate, and shelf physiography on the development of incised-valley complexes: a modern example from the East China Sea[J].Journal of Sedimentary Research, 2003, 73(6): 926-940.

    Google Scholar

    [28] Shanmugam G. The constructive functions of tropical cyclones and Tsunamis on deep-water sand deposition during sea level highstand: inplications for petroleum exploration[J]. AAPG Bulletin, 2008, 92(4): 443-471.

    Google Scholar

    [29] Clark I R, Cartwright J A. Key controls on submarine channel development in structurally active settings[J].Marine and Petroleum Geology, 2011, 28: 1333-1349.

    Google Scholar

    [30] Andersona J E, Cartwrightb J, Drysdall S J, et al. Controls on turbidite sand deposition during gravity-driven extension of a passive margin: examples from Miocene sediments in Block 4, Angola [J]. Marine and Petroleum Geology, 2000, 17, 1165-1203.

    Google Scholar

    [31] Farabaugh R L, Rigsby C A. Climatic influence on sedimentology and geomorphology of the Rio Ramis valley, Peru[J]. Journal of Sedimentary Research, 2005, 75(1): 12-28.

    Google Scholar

    [32] 廖计华, 王华, 孙志鹏, 等.琼东南盆地深水区长昌凹陷构造演化及其对层序样式的控制[J].中南大学学报(自然科学版), 2012, 43(8): 3121-3132.

    Google Scholar

    [33] Séranne M, Anka Z. South Atlantic continental margins of Africa: a comparison of the tectonic vs climate interplay on the evolution of equatorial West Africa and SW Africa margins[J]. Journal of African Earth Sciences, 2005, 43(1/3): 283-300.

    Google Scholar

    [34] Lavier L, Steckler M, Brigaud F. Climatic and tectonic control on the Cenozoic evolution of the West African margin[J]. Marine Geology, 2001(1/4), 178: 63-80.

    Google Scholar

    [35] Bralower T J, Silva I P, Malone M J. New evidence for abrupt climate change in the Cretaceous and Paleogene: an Ocean Drilling Program expedition to Shatsky Rise, northwest Pacific[J]. GSA Today, 2002, 12(11): 4-10.

    Google Scholar

    [36] Zachos J C, Pagani M, Sloan L, et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present[J]. Science, 2001, 292(686): 686-693.

    Google Scholar

    [37] Gradstein F M, Ogg J G, Schmitz M D, et al. The geologic time scale 2012[J]. Elsevier, 2012, 43 (1): 5-13.

    Google Scholar

    [38] 杜品仁, 马宗晋, 高祥林.中、新生代全球尺度地质过程及其对自然环境的影响[J].地学前缘, 2003, 10(8): 38-44.

    Google Scholar

    [39] Kogbe C A, Mehes K. Micropaleontology and Biostratigraphy of the Coastal Basins of West Africa[M]. New York: Pergamon Press, 1986:1-512.

    Google Scholar

    [40] Swain F M. Stratigraphic Micropaleontology of Atlantic Basin and Borderlands[M]. Elsevier Scientific Publishing Company, 1977:1-603.

    Google Scholar

    [41] Bankole S I, Schrank E, Osterloff P L. Palynostratigraphy, palaeoclimates and palaeodepositional environments of the Miocene aged Agbada Formation in the Niger Delta, Nigeria[J]. Journal of African Earth Sciences, 2014, 95: 41-62.

    Google Scholar

    [42] Gosling W D, Miller C S, Livingstone D A. Atlas of the tropical West African pollen flora[J]. Review of Palaeobotany and Palynology, 2013, 199: 1-135.

    Google Scholar

    [43] 汪伟光, 喻莲, 聂明龙.南大西洋两岸被动大陆边缘盆地油气地质特征对比[J].新疆石油地质, 2012, 33(2): 250-255.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(391) PDF downloads(20) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint