Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 2
Article Contents

LI Xiaoli, ZHANG Lifei. Electron Microprobe Reintegration Method for Clinopyroxene Breakdown with Lamellae Exsolution[J]. Rock and Mineral Analysis, 2025, 44(2): 201-213. doi: 10.15898/j.ykcs.202410090212
Citation: LI Xiaoli, ZHANG Lifei. Electron Microprobe Reintegration Method for Clinopyroxene Breakdown with Lamellae Exsolution[J]. Rock and Mineral Analysis, 2025, 44(2): 201-213. doi: 10.15898/j.ykcs.202410090212

Electron Microprobe Reintegration Method for Clinopyroxene Breakdown with Lamellae Exsolution

  • Pyroxene is an important rock-forming mineral in magmatic to metamorphic rocks, which often possesses certain breakdown texture with lamellae exsolution under temperature and pressure changes. In eclogite, the clinopyroxene, mostly omphacite may have different breakdown textures with quartz or amphibole-quartz, orthopyroxene and plagioclase lamellae exsolution during the retrogression process, and the latter is often further composed of clinopyroxene-plagioclase symplectite aggregate at lower grade metamorphism. To explore the temperature-pressure changes and the metamorphic evolution of the parent rock, it is necessary to restore the precursor pyroxene prior to breakdown from the residuary clinopyroxene and associated lamellae. Currently there are two major methods widely applied by different researchers in the pyroxene reintegration before its breakdown, an indirect mathematical fitting approach (method 1) and direct measurement (method 2), both of which are largely based on electron microprobe quantitative analysis. Method 1 largely relies on accurate microprobe analyses of host and exsolved components and appropriate estimates of their area percentages. Method 2 largely relies on the microprobe analytical conditions, involving a grid analysis option, raster mode for electron spot size, and accumulation calculation. Besides, correct standard material selection is also an essential factor. In this work, we exploited these two methods to reintegrate the precursor pyroxene prior to breakdown with (type-ii) orthopyroxene lamellae exsolution and (type-iii) clinopyroxene-plagioclase symplectite from eclogite and retrogressed eclogite samples. The results show that both types of clinopyroxene breakdown are a near-isochemical process that fits the requisite to apply the reintegration method. In type-ii, the reintegrated precursor pyroxene by method 1 tends to have analogous compositions with the unbroken relict omphacite in the sample, and thus this method is more suitable for such a scenario. In type-iii, in the opposite, the reintegrated precursor pyroxene by method 2 seems to have a better compositional consistency, and perhaps this method is more appropriate. Despite that both reintegration methods have their limitations, they are often widely utilized in metamorphic petrology for their technical accessibility and conveniency. In practice, we advise that both methods should be considered, and each outcome must be analyzed appropriately to determine which one is more suitable for the scenario.

  • 加载中
  • [1] 赵珊茸, 边秋娟, 王勤燕. 结晶学及矿物学[M]. 北京: 高等教育出版社, 2011: 368−380.

    Google Scholar

    Zhao S R, Bian Q J, Wang Q Y. Crystallography and mineralogy[M]. Beijing: Higher Education Press, 2011: 368−380.

    Google Scholar

    [2] Morimoto N, Fabries J, Ferguson A K, et al. Nomenclature of pyroxenes[J]. American Mineralogist, 1988, 73(9−10): 1123−1133.

    Google Scholar

    [3] Morimoto N, Kitamura M. Q-J diagram for classification of pyroxenes[J]. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 1983, 78: 141.

    Google Scholar

    [4] Gasparik T. Phase diagrams for geoscientists: An Atlas of the Earth’s interior[M]. New York: Springer Science+Business Media, 2014: 13−31.

    Google Scholar

    [5] Champness P E, Lorimer G W. Precipitation (exsolution) in an orthopyroxene[J]. Journal of Materials Science, 1973, 8(4): 467−474. doi: 10.1007/BF00550450

    CrossRef Google Scholar

    [6] 朱永峰, 徐新. 西准噶尔白碱滩二辉橄榄岩中两种辉石的出溶结构及其地质意义[J]. 岩石学报, 2007, 23(5): 1075−1086. doi: 1000-0569/2007/023(05)-1075-86

    CrossRef Google Scholar

    Zhu Y F, Xu X. Exsolution texture of two-pyrxoenes in lherzolite from Baijiangtan ophiolitic melange, western Junggar, China[J]. Acta Petrologica Sinica, 2007, 23(5): 1075−1086. doi: 1000-0569/2007/023(05)-1075-86

    CrossRef Google Scholar

    [7] Feinberg J M, Wenk H R, Renne P R, et al. Epitaxial relationships of clinopyroxene-hosted magnetite determined using electron backscatter diffraction (EBSD) technique [J]. American Mineralogist, 2004, 89(2−3): 462−466. doi: 10.2138/am-2004-2-328

    CrossRef Google Scholar

    [8] 刘良, 杨家喜, 章军锋, 等. 超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战[J]. 科学通报, 2009, 54(10): 1387−1400. doi: 10.1360/csb2009-54-10-1387

    CrossRef Google Scholar

    Liu L, Yang J X, Zhang J F, et al. Exsolution microstructures in ultrahigh-pressure rocks: Progress, controversies and challenges[J]. Chinese Science Bulletin, 2009, 54(10): 1387−1400. doi: 10.1360/csb2009-54-10-1387

    CrossRef Google Scholar

    [9] Katayama I, Parkinson C D, Okamoto K, et al. Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and pelitic gneiss from the Kokchetav Massif, Kazakhstan[J]. American Mineralogist, 2000, 85(10): 1368−1374. doi: 10.2138/am-2000-1004

    CrossRef Google Scholar

    [10] Gayk T, Kleinschrodt R, Langosch A, et al. Quartz exsolution in clinopyroxene of high-pressure granulite from the Münchberg Massif [J]. European Journal of Mineralogy, 1995, 7(5): 1217−1220. doi: 10.1127/ejm/7/5/1217

    CrossRef Google Scholar

    [11] Page F Z, Essene E J, Mukasa S B. Prograde and retrograde history of eclogites from the Eastern Blue Ridge, North Carolina, USA[J]. Journal of Metamorphic Geology, 2003, 21(7): 685−698. doi: 10.1046/j.1525-1314.2003.00479.x

    CrossRef Google Scholar

    [12] Page F Z, Essene E J, Mukasa S B. Quartz exsolution in clinopyroxene is not proof of ultrahigh pressures: Evidence from eclogites from the eastern Blue Ridge, southern Appalachians, USA[J]. American Mineralogist, 2005, 90(7): 1092−1099. doi: 10.2138/am.2005.1761

    CrossRef Google Scholar

    [13] Zhang L, Song S, Liou J G, et al. Relic coesite exsolution in omphacite from western Tianshan eclogites, China[J]. American Mineralogist, 2005, 90(1): 181−186. doi: 10.2138/am.2005.1587

    CrossRef Google Scholar

    [14] Anderson E D, Moecher D P. Omphacite breakdown reactions and relation to eclogite exhumation rates[J]. Contributions to Mineralogy and Petrology, 2007, 154: 253−277. doi: 10.1007/s00410-007-0192-x

    CrossRef Google Scholar

    [15] Gopon P, Forshaw J B, Wade J, et al. Seeing through metamorphic overprints in Archean granulites: Combined high-resolution thermometry and phase equilibrium modeling of the Lewisian Complex, Scotland[J]. American Mineralogist, 2022, 107(8): 1487−1500. doi: 10.2138/am-2022-8214CCBY

    CrossRef Google Scholar

    [16] Liu X, Zhao Z, Zhao Y, et al. Pyroxene exsolution in mafic granulites from the Grove Mountains, East Antarctica: Constraints on Pan-African metamorphic conditions[J]. European Journal of Mineralogy, 2003, 15(1): 55−65. doi: 10.1127/0935-1221/2003/0001-0055

    CrossRef Google Scholar

    [17] Wu C, Zhang L, Li Q, et al. Tectonothermal transition from continental collision to post-collision: Insights from eclogites overprinted in the ultrahigh-temperature granulite facies (Yadong region, Central Himalaya)[J]. Journal of Metamorphic Geology, 2022, 40(5): 955−981.

    Google Scholar

    [18] Su W, You Z, Wang R. Quartz and clinoenstatite exsolution in clinopyroxene of garnet-pyroxenolite from the North Dabie Mountains, eastern China [J]. Chinese Science Bulletin, 2001, 46(17): 1482−1485. doi: 10.1007/BF03187037

    CrossRef Google Scholar

    [19] Alifirova T A, Pokhilenk L N, Korsakov A V. Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia[J]. Lithos, 2015, 226: 31−49. doi: 10.1016/j.lithos.2015.01.020

    CrossRef Google Scholar

    [20] 赵珊茸, 徐畅, 徐海军, 等. 海南文昌二辉橄榄岩中辉石出溶结构的结晶学取向分析[J]. 岩石学报, 2016, 32(6): 1644−1652. doi: 1000-0569/20161032(06)-1644-52

    CrossRef Google Scholar

    Zhao S R, Xu C, Xu H J, et al. Crystallographic orientation of the exsolution microstructure in pyroxene, occurring in lherzolite from Wenchang area, Hainan, China[J]. Acta Petrologica Sinica, 2016, 32(6): 1644−1652. doi: 1000-0569/20161032(06)-1644-52

    CrossRef Google Scholar

    [21] Smyth J R. Cation vacancies and the crystal chemistry of breakdown reactions in kimberlitic omphacites[J]. American Mineralogist, 1980, 65(11−12): 1185−1191.

    Google Scholar

    [22] Gasparik T. Experimental study of subsolidus phase relations and mixing properties of pyroxene and plagioclase in the system Na2O-CaO-Al2O3-SiO2[J]. Contribution to Mineralogy and Petrology, 1985, 71: 13−22. doi: 10.1007/BF00381556

    CrossRef Google Scholar

    [23] Konzett J, Frost D J, Proyer A, et al. The CaEskola component in eclogitic clinopyroxene as a function of pressure, temperature and bulk composition: An experimental study to 15GPa with possible implications for the formation of oriented SiO2-inclusions in omphacite[J]. Contribution to Mineralogy and Petrology, 2008, 155(2): 215−228. doi: 10.1007/s00410-007-0238-0

    CrossRef Google Scholar

    [24] Li X, Zhang L, Wei C, et al. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P-T path of Belomorian eclogites[J]. Journal of Metamorphic Geology, 2018, 36(1): 1−22. doi: 10.1111/jmg.12280

    CrossRef Google Scholar

    [25] Li X, Zhang L, Bader T. The metamorphic PT history of Precambrian Belomorian eclogites (Shirokaya Salma), Russia[J]. Journal of Metamorphic Geology, 2021, 39(3): 363−389. doi: 10.1111/jmg.12573

    CrossRef Google Scholar

    [26] Joanny V, van Roermund H, Lardeaux J M. The clinopyroxene/plagioclase symplectite in retrograde eclogites: A potential geothermobarometer[J]. Geologische Rundschau, 1991, 80: 303−320. doi: 10.1007/BF01829368

    CrossRef Google Scholar

    [27] Zertani S, Morales L F G, Menegon L. Omphacite break-down: Nucleation and deformation of clinopyroxene-plagioclase symplectites[J]. Contributions to Mineralogy and Petrology, 2024, 179: 40. doi: 10.1007/s00410-024-02125-0

    CrossRef Google Scholar

    [28] Dobrzhinetskaya L F, Schweinenage R, Massonne H J, et al. Silica precipitates in omphacite from eclogite at Alpe Arami, Switzerland: Evidence of deep subduction[J]. Journal of Metamorphic Geology, 2002, 20(5): 481−492. doi: 10.1046/j.1525-1314.2002.00383.x

    CrossRef Google Scholar

    [29] Liu F, Zhang L, Li X, et al. The metamorphic evolution of Paleoproterozoic eclogites in Kuru-Vaara, northern Belomorian Province, Russia: Constraints from P-T pseudosections and zircon dating[J]. Precambrian Research, 2017, 289: 31−47. doi: 10.1016/j.precamres.2016.11.011

    CrossRef Google Scholar

    [30] Holland T J B. The reaction albite=jadeite+quartz determined experimentally in the range 600−1200℃[J]. American Mineralogist, 1980, 65(1−2): 129−134.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(131) PDF downloads(24) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint