Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 2
Article Contents

SUN Shiqiang, CHEN Cuihua, ZHAO Wenhao, LAI Xiang, MA Tianqi, ZHANG Haijun, QIAO Mengyi, SONG Zhijiao, CHEN Xiaojie, GU Ying. Mineral Typomorphic Characteristics and Deposit Genesis of Germanium-Enriched Sphalerite from Wusihe in the Southwestern Margin of the Yangtze Block[J]. Rock and Mineral Analysis, 2025, 44(2): 214-229. doi: 10.15898/j.ykcs.202406210138
Citation: SUN Shiqiang, CHEN Cuihua, ZHAO Wenhao, LAI Xiang, MA Tianqi, ZHANG Haijun, QIAO Mengyi, SONG Zhijiao, CHEN Xiaojie, GU Ying. Mineral Typomorphic Characteristics and Deposit Genesis of Germanium-Enriched Sphalerite from Wusihe in the Southwestern Margin of the Yangtze Block[J]. Rock and Mineral Analysis, 2025, 44(2): 214-229. doi: 10.15898/j.ykcs.202406210138

Mineral Typomorphic Characteristics and Deposit Genesis of Germanium-Enriched Sphalerite from Wusihe in the Southwestern Margin of the Yangtze Block

More Information
  • The Wusihe lead-zinc deposit, situated at the southwestern margin of the Yangtze Block and a prominent Ge-enriched deposit within the Sichuan—Yunnan—Guizhou lead-zinc metallogenic belt, faces ongoing debates regarding its genesis. The influence of sphalerite typomorphic characteristics on Ge enrichment and substitution mechanisms within the deposit remains a crucial puzzle to unravel. To address this, the paper employs quantitative analyses using microscopic spectrophotometry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The results reveal the presence of two sphalerite stages during the hydrothermal period: a darker Stage Ⅰ and a lighter Stage Ⅱ. Despite similar mean values for visual reflectance and the dominant wavelength of reflectance color, the mean reflectance color saturation differs (0.048 and 0.043, respectively), with corresponding average Ge contents of 244.33×10−6g/g and 43.22×10−6g/g, respectively. The experimental outcomes conclude that Ge exists in sphalerite as isomorphism and is more concentrated in sphalerite with higher reflectance color saturation. The ore-forming temperature is medium to low, classifying the deposit as a Mississippi Valley-type lead-zinc deposit. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202406210138.

  • 加载中
  • [1] 刘萧晗, 孟郁苗. “锗”里有奥秘, 观“锗”寻真谛[J]. 矿物岩石地球化学通报, 2024, 43(2): 467−473. doi: 10.3724/j.issn.1007-2802.20240041

    CrossRef Google Scholar

    Liu X H, Meng Y M. There is a mystery in “germanium”, observe “germanium” to find the true meaning[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(2): 467−473. doi: 10.3724/j.issn.1007-2802.20240041

    CrossRef Google Scholar

    [2] 赵君, 饶竹, 王鹏, 等. 黑龙江讷河市富锗土壤地球化学特征及影响因素浅析[J]. 岩矿测试, 2022, 41(4): 642−651. doi: 10.15898/j.cnki.11-2131/td.202109300139

    CrossRef Google Scholar

    Zhao J, Rao Z, Wang P, et al. Geochemical characteristics and influencing factors of germanium-enriched soils in Nehe City, Heilongjiang Province[J]. Rock and Mineral Analysis, 2022, 41(4): 642−651. doi: 10.15898/j.cnki.11-2131/td.202109300139

    CrossRef Google Scholar

    [3] 叶霖, 韦晨, 胡宇思, 等. 锗的地球化学及资源储备展望[J]. 矿床地质, 2019, 38(4): 711−728. doi: 10.16111/j.0258-7106.2019.04.003

    CrossRef Google Scholar

    Ye L, Wei C, Hu Y S, et al. Geochemistry of germanium and its resources reserves[J]. Mineral Deposits, 2019, 38(4): 711−728. doi: 10.16111/j.0258-7106.2019.04.003

    CrossRef Google Scholar

    [4] Cugerone A, Cenki-Tok B, Mu M, et al. Behavior of critical metals in metamorphosed Pb-Zn ore deposits: Example from the Pyrenean axial zone[J]. Mineralium Deposita, 2021, 56(4): 685−705. doi: 10.1007/s00126-020-01000-9

    CrossRef Google Scholar

    [5] Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: A LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761−4791. doi: 10.1016/j.gca.2009.05.045

    CrossRef Google Scholar

    [6] Lai X, Chen C H, Yang Y L, et al. Constraints on metallogenic temperature and mineralization style from reflection color of sphalerite[J]. Ore Geology Reviews, 2023, 161: 105634. doi: 10.1016/j.oregeorev.2023.105634

    CrossRef Google Scholar

    [7] 吴越, 孔志岗, 陈懋弘, 等. 扬子板块周缘MVT型铅锌矿床闪锌矿微量元素组成特征与指示意义: LA-ICP-MS研究[J]. 岩石学报, 2019, 35(11): 3443−3460. doi: 10.18654/1000-0569/2019.11.12

    CrossRef Google Scholar

    Wu Y, Kong Z G, Chen M H, et al. Trace elements in sphalerites from the Mississippi Valley-type lead-zinc deposits around the margins of Yangtze Block and its geological implications: A LA-ICP-MS study[J]. Acta Petrologica Sinica, 2019, 35(11): 3443−3460. doi: 10.18654/1000-0569/2019.11.12

    CrossRef Google Scholar

    [8] 温汉捷, 周正兵, 朱传威, 等. 稀散金属超常富集的主要科学问题[J]. 岩石学报, 2019, 35(11): 3271−3291.

    Google Scholar

    Wen H J, Zhou Z B, Zhu C W, et al. Critical scientific issues of super-enrichment of dispersed metals[J]. Acta Petrologica Sinica, 2019, 35(11): 3271−3291.

    Google Scholar

    [9] 周家喜, 杨德智, 余杰, 等. 贵州黄丝背斜地区实现大型共(伴)生锗矿床找矿突破[J]. 矿物学报, 2020, 40(6): 772. doi: 10.16461/j.cnki.1000-4734.2020.40.169

    CrossRef Google Scholar

    Zhou J X, Yang D Z, Yu J, et al. A breakthrough in prospecting for large-scale germanium deposit in the Huangsi anticline area, Guizhou Province, China[J]. Acta Mineralogica Sinica, 2020, 40(6): 772. doi: 10.16461/j.cnki.1000-4734.2020.40.169

    CrossRef Google Scholar

    [10] 韩润生, 吴鹏, 王峰, 等. 论热液矿床深部大比例尺“四步式”找矿方法——以川滇黔接壤区毛坪富锗铅锌矿为例[J]. 大地构造与成矿学, 2019, 43(2): 246−257. doi: 10.16539/j.ddgzyckx.2019.02.005

    CrossRef Google Scholar

    Han R S, Wu P, Wang F, et al. ‘Four Steps Type’ ore-prospecting method for deeply concealed hydrothermal ore deposits——A case study of the Maoping Zn-Pb- (Ag-Ge) deposit in southwestern China[J]. Geotectonica et Metallogenia, 2019, 43(2): 246−257. doi: 10.16539/j.ddgzyckx.2019.02.005

    CrossRef Google Scholar

    [11] 韩润生, 吴鹏, 张艳, 等. 西南特提斯川滇黔成矿区富锗铅锌矿床成矿理论研究新进展[J]. 地质学报, 2022, 96(2): 554−573. doi: 10.3969/j.issn.0001-5717.2022.02.014

    CrossRef Google Scholar

    Han R S, Wu P, Zhang Y, et al. New research progress in metallogenic theory for rich Zn-Pb-(Ag-Ge) deposits in the Sichuan—Yunnan—Guizhou Triangle (SYGT) area, southwestern Tethys[J]. Acta Geologica Sinica, 2022, 96(2): 554−573. doi: 10.3969/j.issn.0001-5717.2022.02.014

    CrossRef Google Scholar

    [12] 郑绪忠. 四川乌斯河铅锌矿床地质特征及矿床成因[D]. 西安: 长安大学, 2012.

    Google Scholar

    Zheng X Z. Geological features and genesis of Wusihe Pb-Zn deposit, Sichuan[D]. Xi’an: Chang’an University, 2012.

    Google Scholar

    [13] Xiong S F, Gong Y J, Jiang S Y, et al. Ore genesis of the Wusihe carbonate-hosted Zn-Pb deposit in the Dadu River Valley district, Yangtze Block, SW China: Evidence from ore geology, S-Pb isotopes, and sphalerite Rb-Sr dating[J]. Mineralium Deposita, 2018, 53(7): 967−979. doi: 10.1007/s00126-017-0776-y

    CrossRef Google Scholar

    [14] 韦晨, 叶霖, 李珍立, 等. 四川乌斯河铅锌矿床成矿物质来源及矿床成因: 来自原位S-Pb同位素证据[J]. 岩石学报, 2020, 36(12): 3783−3796. doi: 10.18654/1000-0569/2020.12.13

    CrossRef Google Scholar

    Wei C, Ye L, Li Z L, et al. Metal sources and ore genesis of the Wusihe Pb-Zn deposit in Sichuan, China: New evidence from in-situ S and Pb isotopes[J]. Acta Petrologica Sinica, 2020, 36(12): 3783−3796. doi: 10.18654/1000-0569/2020.12.13

    CrossRef Google Scholar

    [15] 熊索菲, 姚书振, 宫勇军, 等. 四川乌斯河铅锌矿床成矿流体特征及TSR作用初探[J]. 地球科学, 2016, 41(1): 105−120. doi: 10.3799/dqkx.2016.008

    CrossRef Google Scholar

    Xiong S F, Yao S C, Gong Y J, et al. Ore-forming fluid and thermochemical sulfate reduction in the Wusihe lead-zinc deposit, Sichuan Province, China[J]. Earth Science, 2016, 41(1): 105−120. doi: 10.3799/dqkx.2016.008

    CrossRef Google Scholar

    [16] 康许浩. 乌斯河铅锌矿床矿物成分特征[J]. 四川有色金属, 2022(1): 10−12. doi: 10.3969/j.issn.1006-4079.2022.01.004

    CrossRef Google Scholar

    Kang X H. The mineral composition characteristics of Wusihe Pb-Zn deposit[J]. Sichuan Nonferrous Metals, 2022(1): 10−12. doi: 10.3969/j.issn.1006-4079.2022.01.004

    CrossRef Google Scholar

    [17] 赵文皓, 陈翠华, 康许浩, 等. 四川乌斯河铅锌矿床闪锌矿微量元素特征及其指示意义[J]. 矿物岩石, 2024, 44(2): 62−73. doi: 10.19719/j.cnki.1001-6872.2024.02.05

    CrossRef Google Scholar

    Zhao W H, Chen C H, Kang X H, et al. Characteristics of trace elements in sphalerite and its indicative significance in Wusihe deposit, Sichuan Province[J]. Mineralogy and Petrology, 2024, 44(2): 62−73. doi: 10.19719/j.cnki.1001-6872.2024.02.05

    CrossRef Google Scholar

    [18] 罗开, 周家喜, 徐畅, 等. 四川乌斯河大型锗铅锌矿床锗超常富集特征及其地质意义[J]. 岩石学报, 2021, 37(9): 2761−2777. doi: 10.18654/1000-0569/2021.09.10

    CrossRef Google Scholar

    Luo K, Zhou J X, Xu C, et al. The characteristics of the extraordinary germanium enrichment in the Wusihe large-scale Ge-Pb-Zn deposit, Sichuan Province, China and its geological significance[J]. Acta Petrologica Sinica, 2021, 37(9): 2761−2777. doi: 10.18654/1000-0569/2021.09.10

    CrossRef Google Scholar

    [19] 竺成林, 王华建, 叶云涛, 等. 基于原位多元素成像分析龙马溪组笔石成因及地质意义[J]. 岩矿测试, 2019, 38(3): 245−259. doi: 10.15898/j.cnki.11-2131/td.201810110113

    CrossRef Google Scholar

    Zhu C L, Wang J H, Ye Y T, et al. The formation mechanism and geological significance of graptolite from the Longmaxi Formation: Constraints fromin situ multi-element imaging analysis[J]. Rock and Mineral Analysis, 2019, 38(3): 245−259. doi: 10.15898/j.cnki.11-2131/td.201810110113

    CrossRef Google Scholar

    [20] 范晨子, 孙冬阳, 赵令浩, 等. 激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分[J]. 岩矿测试, 2024, 43(1): 87−100. doi: 10.15898/j.ykcs.202305310072

    CrossRef Google Scholar

    Fan C Z, Sun D Y, Zhao L H, et al. In situ quantitative analysis of chemical composition of lithium and beryllium minerals by laser ablation inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2024, 43(1): 87−100. doi: 10.15898/j.ykcs.202305310072

    CrossRef Google Scholar

    [21] 员媛娇, 范成龙, 吕喜平, 等. 电子探针和LA-ICP-MS技术研究内蒙古浩尧尔忽洞金矿床毒砂矿物学特征[J]. 岩矿测试, 2022, 41(2): 211−225. doi: 10.15898/j.cnki.11-2131/td.202111240184

    CrossRef Google Scholar

    Yuan Y J, Fan C L, Lyu X P, et al. Application of EPMA and LA-ICP-MS to study mineralogy of arsenopyrite from the Haoyaoerhudong gold deposit, Inner Mongolia, China[J]. Rock and Mineral Analysis, 2022, 41(2): 211−225. doi: 10.15898/j.cnki.11-2131/td.202111240184

    CrossRef Google Scholar

    [22] Hardy A C. Handbook of colorimetry[J]. Massachusetts Institute of Technology, 1936, 85: 545−546. doi: 10.1126/science.85.2214.545

    CrossRef Google Scholar

    [23] Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1−2): 34−43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [24] Wei C, Ye L, Hu Y S, et al. Distribution and occurrence of Ge and related trace elements in sphalerite from the Lehong carbonate-hosted Zn-Pb deposit northeastern Yunnan, China: Insights from SEM and LA-ICP-MS studies[J]. Ore Geology Reviews, 2019, 115: 103175. doi: 10.1016/j.oregeorev.2019.103175

    CrossRef Google Scholar

    [25] Liu G X, Yuan F, Deng Y F, et al. Critical metal enrichment in carbonate-hosted Pb-Zn systems: Insight from the chemistry of sphalerite within the Hehuashan Pb-Zn deposit, middle-lower Yangtze River metallogenic belt, East China[J]. Ore Geology Reviews, 2022, 151: 105209. doi: 10.1016/j.oregeorev.2022.105209

    CrossRef Google Scholar

    [26] 吉晓佳. 会泽铅锌矿闪锌矿中锗的赋存状态研究和元素替代机制探讨[D]. 北京: 中国地质大学(北京), 2019.

    Google Scholar

    Ji X J. Occurrence of germanium and element alternative mechanism in sphalerite from Huize Pb-Zn deposit[D]. Beijing: China University of Geosciences (Beijing), 2019: 1−39.

    Google Scholar

    [27] 李会来, 李凡, 张鼎文, 等. 低温剥蚀LA-ICP-MS准确测定硫化物矿物多元素分析研究[J]. 岩矿测试, 2023, 42(5): 970−982. doi: 10.15898/j.ykcs.202308290144

    CrossRef Google Scholar

    Li H L, Li F, Zhang D W, et al. Multi-element accurate analysis of sulfide minerals by low-temperature ablation LA-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(5): 970−982. doi: 10.15898/j.ykcs.202308290144

    CrossRef Google Scholar

    [28] 张效瑞, 吴柏林, 雷安贵, 等. 砂岩型铀矿成矿期与非成矿期黄铁矿的微区原位Pb同位素识别特征[J]. 岩矿测试, 2022, 41(5): 717−732. doi: 10.15898/j.cnki.11-2131/td.202111300192

    CrossRef Google Scholar

    Zhang X R, Wu B L, Lei A G, et al. In-situ micro-scale Pb isotope identification characteristics of metallogenic and non-metallogenic pyrites in sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2022, 41(5): 717−732. doi: 10.15898/j.cnki.11-2131/td.202111300192

    CrossRef Google Scholar

    [29] 代堰锫, 余心起, 吴淦国, 等. 北武夷蔡家坪铅锌矿床硫化物特征、矿床成因类型及成矿时代[J].地学前缘, 2011, 18(2): 321−338.

    Google Scholar

    Dai Y P, Yu X Q, Wu G G, et al. Characteristics of sulfide minerals, genetic type and metallogenic epoch of the Caijiaping lead-zinc deposit North Wuyi area, Jiangxi Province[J]. Earth Science Frontiers, 2011, 18(2): 321−338.

    Google Scholar

    [30] Frenzel M, Hirsch T, Gutzmer J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—A meta-analysis[J]. Ore Geology Reviews, 2016, 76: 52−78. doi: 10.1016/j.oregeorev.2015.12.017

    CrossRef Google Scholar

    [31] Cave B, Lilly R, Hong W. The effect of co-crystallising sulphides and precipitation mechanisms on sphalerite geochemistry: A case study from the Hilton Zn-Pb (Ag) deposit, Australia[J]. Minerals, 2020, 9: 1−22. doi: 10.3390/min10090797

    CrossRef Google Scholar

    [32] Oyebamiji A, Hu R Z, Zhao C H, et al. Origin of the Triassic Qilinchang Pb-Zn deposit in the western Yangtze Block, SW China: Insights from in-situ trace elemental compositions of base metal sulphides[J]. Journal of Asian Earth Sciences, 2020, 192: 1−21. doi: 10.1016/j.jseaes.2020.104292

    CrossRef Google Scholar

    [33] Yang Q Z, Xiao J, Ulrich T, et al. Trace element compositions of sulfides from Pb-Zn deposits in the northeast Yunnan and northwest Guizhou Provinces, SW China: Insights from LA-ICP-MS analyses of sphalerite and pyrite[J]. Ore Geology Reviews, 2022, 141: 1−22. doi: 10.1016/j.oregeorev.2021.104639

    CrossRef Google Scholar

    [34] Li G M, Zhao Z X, Wei J H, et al. Trace element compositions of galena in an MVT deposit from the Sichuan—Yunnan—Guizhou metallogenic province, SW China: Constraints from LA-ICP-MS spot analysis and elemental mapping[J]. Ore Geology Reviews, 2022, 150: 1−20. doi: 10.1016/j.oregeorev.2022.105123

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(258) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint