Citation: | SUN Shiqiang, CHEN Cuihua, ZHAO Wenhao, LAI Xiang, MA Tianqi, ZHANG Haijun, QIAO Mengyi, SONG Zhijiao, CHEN Xiaojie, GU Ying. Mineral Typomorphic Characteristics and Deposit Genesis of Germanium-Enriched Sphalerite from Wusihe in the Southwestern Margin of the Yangtze Block[J]. Rock and Mineral Analysis, 2025, 44(2): 214-229. doi: 10.15898/j.ykcs.202406210138 |
The Wusihe lead-zinc deposit, situated at the southwestern margin of the Yangtze Block and a prominent Ge-enriched deposit within the Sichuan—Yunnan—Guizhou lead-zinc metallogenic belt, faces ongoing debates regarding its genesis. The influence of sphalerite typomorphic characteristics on Ge enrichment and substitution mechanisms within the deposit remains a crucial puzzle to unravel. To address this, the paper employs quantitative analyses using microscopic spectrophotometry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The results reveal the presence of two sphalerite stages during the hydrothermal period: a darker Stage Ⅰ and a lighter Stage Ⅱ. Despite similar mean values for visual reflectance and the dominant wavelength of reflectance color, the mean reflectance color saturation differs (0.048 and 0.043, respectively), with corresponding average Ge contents of 244.33×10−6g/g and 43.22×10−6g/g, respectively. The experimental outcomes conclude that Ge exists in sphalerite as isomorphism and is more concentrated in sphalerite with higher reflectance color saturation. The ore-forming temperature is medium to low, classifying the deposit as a Mississippi Valley-type lead-zinc deposit. The BRIEF REPORT is available for this paper at
[1] | 刘萧晗, 孟郁苗. “锗”里有奥秘, 观“锗”寻真谛[J]. 矿物岩石地球化学通报, 2024, 43(2): 467−473. doi: 10.3724/j.issn.1007-2802.20240041 Liu X H, Meng Y M. There is a mystery in “germanium”, observe “germanium” to find the true meaning[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(2): 467−473. doi: 10.3724/j.issn.1007-2802.20240041 |
[2] | 赵君, 饶竹, 王鹏, 等. 黑龙江讷河市富锗土壤地球化学特征及影响因素浅析[J]. 岩矿测试, 2022, 41(4): 642−651. doi: 10.15898/j.cnki.11-2131/td.202109300139 Zhao J, Rao Z, Wang P, et al. Geochemical characteristics and influencing factors of germanium-enriched soils in Nehe City, Heilongjiang Province[J]. Rock and Mineral Analysis, 2022, 41(4): 642−651. doi: 10.15898/j.cnki.11-2131/td.202109300139 |
[3] | 叶霖, 韦晨, 胡宇思, 等. 锗的地球化学及资源储备展望[J]. 矿床地质, 2019, 38(4): 711−728. doi: 10.16111/j.0258-7106.2019.04.003 Ye L, Wei C, Hu Y S, et al. Geochemistry of germanium and its resources reserves[J]. Mineral Deposits, 2019, 38(4): 711−728. doi: 10.16111/j.0258-7106.2019.04.003 |
[4] | Cugerone A, Cenki-Tok B, Mu M, et al. Behavior of critical metals in metamorphosed Pb-Zn ore deposits: Example from the Pyrenean axial zone[J]. Mineralium Deposita, 2021, 56(4): 685−705. doi: 10.1007/s00126-020-01000-9 |
[5] | Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: A LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761−4791. doi: 10.1016/j.gca.2009.05.045 |
[6] | Lai X, Chen C H, Yang Y L, et al. Constraints on metallogenic temperature and mineralization style from reflection color of sphalerite[J]. Ore Geology Reviews, 2023, 161: 105634. doi: 10.1016/j.oregeorev.2023.105634 |
[7] | 吴越, 孔志岗, 陈懋弘, 等. 扬子板块周缘MVT型铅锌矿床闪锌矿微量元素组成特征与指示意义: LA-ICP-MS研究[J]. 岩石学报, 2019, 35(11): 3443−3460. doi: 10.18654/1000-0569/2019.11.12 Wu Y, Kong Z G, Chen M H, et al. Trace elements in sphalerites from the Mississippi Valley-type lead-zinc deposits around the margins of Yangtze Block and its geological implications: A LA-ICP-MS study[J]. Acta Petrologica Sinica, 2019, 35(11): 3443−3460. doi: 10.18654/1000-0569/2019.11.12 |
[8] | 温汉捷, 周正兵, 朱传威, 等. 稀散金属超常富集的主要科学问题[J]. 岩石学报, 2019, 35(11): 3271−3291. Wen H J, Zhou Z B, Zhu C W, et al. Critical scientific issues of super-enrichment of dispersed metals[J]. Acta Petrologica Sinica, 2019, 35(11): 3271−3291. |
[9] | 周家喜, 杨德智, 余杰, 等. 贵州黄丝背斜地区实现大型共(伴)生锗矿床找矿突破[J]. 矿物学报, 2020, 40(6): 772. doi: 10.16461/j.cnki.1000-4734.2020.40.169 Zhou J X, Yang D Z, Yu J, et al. A breakthrough in prospecting for large-scale germanium deposit in the Huangsi anticline area, Guizhou Province, China[J]. Acta Mineralogica Sinica, 2020, 40(6): 772. doi: 10.16461/j.cnki.1000-4734.2020.40.169 |
[10] | 韩润生, 吴鹏, 王峰, 等. 论热液矿床深部大比例尺“四步式”找矿方法——以川滇黔接壤区毛坪富锗铅锌矿为例[J]. 大地构造与成矿学, 2019, 43(2): 246−257. doi: 10.16539/j.ddgzyckx.2019.02.005 Han R S, Wu P, Wang F, et al. ‘Four Steps Type’ ore-prospecting method for deeply concealed hydrothermal ore deposits——A case study of the Maoping Zn-Pb- (Ag-Ge) deposit in southwestern China[J]. Geotectonica et Metallogenia, 2019, 43(2): 246−257. doi: 10.16539/j.ddgzyckx.2019.02.005 |
[11] | 韩润生, 吴鹏, 张艳, 等. 西南特提斯川滇黔成矿区富锗铅锌矿床成矿理论研究新进展[J]. 地质学报, 2022, 96(2): 554−573. doi: 10.3969/j.issn.0001-5717.2022.02.014 Han R S, Wu P, Zhang Y, et al. New research progress in metallogenic theory for rich Zn-Pb-(Ag-Ge) deposits in the Sichuan—Yunnan—Guizhou Triangle (SYGT) area, southwestern Tethys[J]. Acta Geologica Sinica, 2022, 96(2): 554−573. doi: 10.3969/j.issn.0001-5717.2022.02.014 |
[12] | 郑绪忠. 四川乌斯河铅锌矿床地质特征及矿床成因[D]. 西安: 长安大学, 2012. Zheng X Z. Geological features and genesis of Wusihe Pb-Zn deposit, Sichuan[D]. Xi’an: Chang’an University, 2012. |
[13] | Xiong S F, Gong Y J, Jiang S Y, et al. Ore genesis of the Wusihe carbonate-hosted Zn-Pb deposit in the Dadu River Valley district, Yangtze Block, SW China: Evidence from ore geology, S-Pb isotopes, and sphalerite Rb-Sr dating[J]. Mineralium Deposita, 2018, 53(7): 967−979. doi: 10.1007/s00126-017-0776-y |
[14] | 韦晨, 叶霖, 李珍立, 等. 四川乌斯河铅锌矿床成矿物质来源及矿床成因: 来自原位S-Pb同位素证据[J]. 岩石学报, 2020, 36(12): 3783−3796. doi: 10.18654/1000-0569/2020.12.13 Wei C, Ye L, Li Z L, et al. Metal sources and ore genesis of the Wusihe Pb-Zn deposit in Sichuan, China: New evidence from in-situ S and Pb isotopes[J]. Acta Petrologica Sinica, 2020, 36(12): 3783−3796. doi: 10.18654/1000-0569/2020.12.13 |
[15] | 熊索菲, 姚书振, 宫勇军, 等. 四川乌斯河铅锌矿床成矿流体特征及TSR作用初探[J]. 地球科学, 2016, 41(1): 105−120. doi: 10.3799/dqkx.2016.008 Xiong S F, Yao S C, Gong Y J, et al. Ore-forming fluid and thermochemical sulfate reduction in the Wusihe lead-zinc deposit, Sichuan Province, China[J]. Earth Science, 2016, 41(1): 105−120. doi: 10.3799/dqkx.2016.008 |
[16] | 康许浩. 乌斯河铅锌矿床矿物成分特征[J]. 四川有色金属, 2022(1): 10−12. doi: 10.3969/j.issn.1006-4079.2022.01.004 Kang X H. The mineral composition characteristics of Wusihe Pb-Zn deposit[J]. Sichuan Nonferrous Metals, 2022(1): 10−12. doi: 10.3969/j.issn.1006-4079.2022.01.004 |
[17] | 赵文皓, 陈翠华, 康许浩, 等. 四川乌斯河铅锌矿床闪锌矿微量元素特征及其指示意义[J]. 矿物岩石, 2024, 44(2): 62−73. doi: 10.19719/j.cnki.1001-6872.2024.02.05 Zhao W H, Chen C H, Kang X H, et al. Characteristics of trace elements in sphalerite and its indicative significance in Wusihe deposit, Sichuan Province[J]. Mineralogy and Petrology, 2024, 44(2): 62−73. doi: 10.19719/j.cnki.1001-6872.2024.02.05 |
[18] | 罗开, 周家喜, 徐畅, 等. 四川乌斯河大型锗铅锌矿床锗超常富集特征及其地质意义[J]. 岩石学报, 2021, 37(9): 2761−2777. doi: 10.18654/1000-0569/2021.09.10 Luo K, Zhou J X, Xu C, et al. The characteristics of the extraordinary germanium enrichment in the Wusihe large-scale Ge-Pb-Zn deposit, Sichuan Province, China and its geological significance[J]. Acta Petrologica Sinica, 2021, 37(9): 2761−2777. doi: 10.18654/1000-0569/2021.09.10 |
[19] | 竺成林, 王华建, 叶云涛, 等. 基于原位多元素成像分析龙马溪组笔石成因及地质意义[J]. 岩矿测试, 2019, 38(3): 245−259. doi: 10.15898/j.cnki.11-2131/td.201810110113 Zhu C L, Wang J H, Ye Y T, et al. The formation mechanism and geological significance of graptolite from the Longmaxi Formation: Constraints fromin situ multi-element imaging analysis[J]. Rock and Mineral Analysis, 2019, 38(3): 245−259. doi: 10.15898/j.cnki.11-2131/td.201810110113 |
[20] | 范晨子, 孙冬阳, 赵令浩, 等. 激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分[J]. 岩矿测试, 2024, 43(1): 87−100. doi: 10.15898/j.ykcs.202305310072 Fan C Z, Sun D Y, Zhao L H, et al. In situ quantitative analysis of chemical composition of lithium and beryllium minerals by laser ablation inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2024, 43(1): 87−100. doi: 10.15898/j.ykcs.202305310072 |
[21] | 员媛娇, 范成龙, 吕喜平, 等. 电子探针和LA-ICP-MS技术研究内蒙古浩尧尔忽洞金矿床毒砂矿物学特征[J]. 岩矿测试, 2022, 41(2): 211−225. doi: 10.15898/j.cnki.11-2131/td.202111240184 Yuan Y J, Fan C L, Lyu X P, et al. Application of EPMA and LA-ICP-MS to study mineralogy of arsenopyrite from the Haoyaoerhudong gold deposit, Inner Mongolia, China[J]. Rock and Mineral Analysis, 2022, 41(2): 211−225. doi: 10.15898/j.cnki.11-2131/td.202111240184 |
[22] | Hardy A C. Handbook of colorimetry[J]. Massachusetts Institute of Technology, 1936, 85: 545−546. doi: 10.1126/science.85.2214.545 |
[23] | Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1−2): 34−43. doi: 10.1016/j.chemgeo.2008.08.004 |
[24] | Wei C, Ye L, Hu Y S, et al. Distribution and occurrence of Ge and related trace elements in sphalerite from the Lehong carbonate-hosted Zn-Pb deposit northeastern Yunnan, China: Insights from SEM and LA-ICP-MS studies[J]. Ore Geology Reviews, 2019, 115: 103175. doi: 10.1016/j.oregeorev.2019.103175 |
[25] | Liu G X, Yuan F, Deng Y F, et al. Critical metal enrichment in carbonate-hosted Pb-Zn systems: Insight from the chemistry of sphalerite within the Hehuashan Pb-Zn deposit, middle-lower Yangtze River metallogenic belt, East China[J]. Ore Geology Reviews, 2022, 151: 105209. doi: 10.1016/j.oregeorev.2022.105209 |
[26] | 吉晓佳. 会泽铅锌矿闪锌矿中锗的赋存状态研究和元素替代机制探讨[D]. 北京: 中国地质大学(北京), 2019. Ji X J. Occurrence of germanium and element alternative mechanism in sphalerite from Huize Pb-Zn deposit[D]. Beijing: China University of Geosciences (Beijing), 2019: 1−39. |
[27] | 李会来, 李凡, 张鼎文, 等. 低温剥蚀LA-ICP-MS准确测定硫化物矿物多元素分析研究[J]. 岩矿测试, 2023, 42(5): 970−982. doi: 10.15898/j.ykcs.202308290144 Li H L, Li F, Zhang D W, et al. Multi-element accurate analysis of sulfide minerals by low-temperature ablation LA-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(5): 970−982. doi: 10.15898/j.ykcs.202308290144 |
[28] | 张效瑞, 吴柏林, 雷安贵, 等. 砂岩型铀矿成矿期与非成矿期黄铁矿的微区原位Pb同位素识别特征[J]. 岩矿测试, 2022, 41(5): 717−732. doi: 10.15898/j.cnki.11-2131/td.202111300192 Zhang X R, Wu B L, Lei A G, et al. In-situ micro-scale Pb isotope identification characteristics of metallogenic and non-metallogenic pyrites in sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2022, 41(5): 717−732. doi: 10.15898/j.cnki.11-2131/td.202111300192 |
[29] | 代堰锫, 余心起, 吴淦国, 等. 北武夷蔡家坪铅锌矿床硫化物特征、矿床成因类型及成矿时代[J].地学前缘, 2011, 18(2): 321−338. Dai Y P, Yu X Q, Wu G G, et al. Characteristics of sulfide minerals, genetic type and metallogenic epoch of the Caijiaping lead-zinc deposit North Wuyi area, Jiangxi Province[J]. Earth Science Frontiers, 2011, 18(2): 321−338. |
[30] | Frenzel M, Hirsch T, Gutzmer J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—A meta-analysis[J]. Ore Geology Reviews, 2016, 76: 52−78. doi: 10.1016/j.oregeorev.2015.12.017 |
[31] | Cave B, Lilly R, Hong W. The effect of co-crystallising sulphides and precipitation mechanisms on sphalerite geochemistry: A case study from the Hilton Zn-Pb (Ag) deposit, Australia[J]. Minerals, 2020, 9: 1−22. doi: 10.3390/min10090797 |
[32] | Oyebamiji A, Hu R Z, Zhao C H, et al. Origin of the Triassic Qilinchang Pb-Zn deposit in the western Yangtze Block, SW China: Insights from in-situ trace elemental compositions of base metal sulphides[J]. Journal of Asian Earth Sciences, 2020, 192: 1−21. doi: 10.1016/j.jseaes.2020.104292 |
[33] | Yang Q Z, Xiao J, Ulrich T, et al. Trace element compositions of sulfides from Pb-Zn deposits in the northeast Yunnan and northwest Guizhou Provinces, SW China: Insights from LA-ICP-MS analyses of sphalerite and pyrite[J]. Ore Geology Reviews, 2022, 141: 1−22. doi: 10.1016/j.oregeorev.2021.104639 |
[34] | Li G M, Zhao Z X, Wei J H, et al. Trace element compositions of galena in an MVT deposit from the Sichuan—Yunnan—Guizhou metallogenic province, SW China: Constraints from LA-ICP-MS spot analysis and elemental mapping[J]. Ore Geology Reviews, 2022, 150: 1−20. doi: 10.1016/j.oregeorev.2022.105123 |
(a) China’s tectonic background; (b) Distribution and location map of lead-zinc deposits in the Yangtze Platform (modified by Xiong, et al.[15]); (c) Geological map and sampling points of the Wusihe deposit (modified by Luo, et al.[18])
Characteristics of sphalerite specimens in two stages of Wusihe deposit (Sp—Sphalerite; Gn—Galena; Cal—Calcite; Sar—Sulfide mineral)
Microscopic characteristics of sphalerite in two stages of Wusihe deposit
Box diagrams of visual reflectance (a), reflected color main band (b) and reflected color saturation (c) of sphalerite in two stages of Wusihe deposit
Time resolution curves of trace elements of SpⅠ stage (a) and SpⅡ stage (b) sphalerite in Wusihe deposit
Relationship of trace elements of sphalerite in two stages of Wusihe deposit
Line diagrams of sphalerite girth and trace elements in Wusihe deposit
Identification diagrams of genetic types of trace elements in sphalerite
Genetic type discrimination diagram of color index characteristics of sphalerite (Modified by Lai, et al[6]. The score coefficients of log(λd), log(Rvis) and log(Pe) on PC1 are 0.584, 0.584 and −0.005, respectively, and those on PC2 are 0.055, −0.047 and 0.996, respectively)