Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 6
Article Contents

WANG Junjie, WANG Qiaohuan, XIONG Manyan, SONG Xiangmei, WANG Meie, FU Huimin, LI Hong, MENG Ling. Determination of Organic Carbon in Soil and Sediment by the Elemental Analyzer with Silver Cup Digestion Method[J]. Rock and Mineral Analysis, 2024, 43(6): 936-944. doi: 10.15898/j.ykcs.202409100185
Citation: WANG Junjie, WANG Qiaohuan, XIONG Manyan, SONG Xiangmei, WANG Meie, FU Huimin, LI Hong, MENG Ling. Determination of Organic Carbon in Soil and Sediment by the Elemental Analyzer with Silver Cup Digestion Method[J]. Rock and Mineral Analysis, 2024, 43(6): 936-944. doi: 10.15898/j.ykcs.202409100185

Determination of Organic Carbon in Soil and Sediment by the Elemental Analyzer with Silver Cup Digestion Method

More Information
  • Soil organic carbon (SOC) is an important indicator of soil health and ecosystem functioning and is of great significance for agricultural production and environmental protection. Accurate determination of SOC content is essential for assessing soil quality, optimizing fertilizer management, improving crop yields, and contributing greatly in the research of tackling climate change as well as the carbon cycle. A rapid and accurate method for the determination of organic carbon in soil and sediment was established to support scientific research and agricultural production. The silver cup digestion-elemental analyzer method was used to process soil samples using 81-porosity copper plates and silver cups by optimizing sample pretreatment, including acid concentration and volume, sample weight as well as digestion temperature. The specific procedure was initially weighing 25mg of sample using Φ5mm×9mm silver cups, then adding 80L of 2mol/L hydrochloric acid to remove inorganic carbon, followed by drying the sample on an electric hot plate at 70℃. Samples with high inorganic carbon were treated by repeated acid addition. Low and high content standards were used to form a mixed standard curve to quantify the organic carbon with a daily calibration method. The method demonstrated excellent linearity in the range of 21.2−6704.3μg of organic carbon content with a linear correlation coefficient of 0.9998. The limits of detection (LOD) and quantification (LOQ) of the method were 0.07% and 0.23%, respectively, based on a sample weight of 25mg. The precision of organic carbon determined for six standard substances (GBW07406, GBW07385, GBW07391, GBW07544, GBW07544, GBW07546 and GBW07365) ranged from 0.67% to 5.14%, with all measured values falling within the range of the standard values. The method demonstrates high precision and accuracy, which meets the requirements for the determination of organic carbon in soil and sediment and is suitable for the analysis of large quantities of samples.

  • 加载中
  • [1] 查同刚. 土壤理化分析[M]. 北京: 中国林业出版社, 2017: 79−87.

    Google Scholar

    Zha T G. Soil physicochemical analysis[M]. Beijing: China Forestry Publishing House, 2017: 79−87

    Google Scholar

    [2] Hicks P C E, Ryals R, Zhu B, et al. The deep soil organic carbon response to global change[J]. Annual Review of Ecology, Evolution, and Systematics, 2023, 54(1): 375−401. doi: 10.1146/annurev-ecolsys-102320-085332

    CrossRef Google Scholar

    [3] Ferraz M A, Choueri R B, Castro Í B, et al. Influence of sediment organic carbon on toxicity depends on organism’s trophic ecology[J]. Environmental Pollution, 2020, 261: 114134.1−114134.10. doi: 10.1016/j.envpol.2020.114134

    CrossRef Google Scholar

    [4] 李源, 尹肖尧, 常钟元. 高频红外碳硫仪测定土壤和沉积物中有机质[J]. 化学分析计量, 2020, 29(6): 75−78. doi: 10.3969/j.issn.1008-6145.2020.06.017

    CrossRef Google Scholar

    Li Y, Yin X Y, Chang Z Y. Determination of organic matter in soil and sediment by high frequency infrared carbon sulphur instrument[J]. Chemical Analysis and Meterage, 2020, 29(6): 75−78. doi: 10.3969/j.issn.1008-6145.2020.06.017

    CrossRef Google Scholar

    [5] 吴才武, 夏建新, 段峥嵘. 土壤有机质测定方法述评与展望[J]. 土壤, 2015, 47(3): 453−460. doi: 10.13758/j.cnki.tr.2015.03.004

    CrossRef Google Scholar

    Wu C W, Xia J X, Duan Z R. Review on detection methods of soil organic matter (SOM)[J]. Soils, 2015, 47(3): 453−460. doi: 10.13758/j.cnki.tr.2015.03.004

    CrossRef Google Scholar

    [6] 李国傲, 何咏, 陈雪, 等. 全自动消解测定土壤/沉积物中的有机碳[J]. 环境工程, 2016, 34(5): 152−155. doi: 10.13205/j.hjgc.201605033

    CrossRef Google Scholar

    Li G A, He Y, Chen X, et al. Determina of organic carbon in soil/sediments by automatic digestion[J]. Environmental Engineering, 2016, 34(5): 152−155. doi: 10.13205/j.hjgc.201605033

    CrossRef Google Scholar

    [7] 李朝英, 郑路, 郑之卓, 等. 自动滴定仪测定土壤有机碳及其组分的方法优化[J]. 岩矿测试, 2024, 43(4): 632−640. doi: 10.15898/j.ykcs.202404210092

    CrossRef Google Scholar

    Li Z Y, Zheng L, Zheng Z Z, et al. Method optimization for the determination of soil organic carbon and its components by automatic titrator[J]. Rock and Mineral Analysis, 2024, 43(4): 632−640. doi: 10.15898/j.ykcs.202404210092

    CrossRef Google Scholar

    [8] 杨林婧, 杨莎, 张圣杨, 等. 农田土壤有机碳高光谱特征及定量监测研究[J]. 激光生物学报, 2024, 33(4): 316−325. doi: 10.3969/j.issn.1007-7146.2024.04.004

    CrossRef Google Scholar

    Yang L J, Yang S, Zhang S Y, et al. Hyperspectral characteristics and quantitative monitoring of soil organic carbon in farmland[J]. Acta Laser Biology Sinica, 2024, 33(4): 316−325. doi: 10.3969/j.issn.1007-7146.2024.04.004

    CrossRef Google Scholar

    [9] 于雯泉, 钟少军. 海洋沉积物有机碳分析方法中干燥预处理过程人为误差的发现及其意义[J]. 环境科学学报, 2007, 27(5): 861−867. doi: 10.3321/j.issn:0253-2468.2007.05.025

    CrossRef Google Scholar

    Yu W Q, Zhong S J. Freeze-drying pretreatment improves organic carbon determinations of marine sediments[J]. Acta Scientiac Circumstantiac, 2007, 27(5): 861−867. doi: 10.3321/j.issn:0253-2468.2007.05.025

    CrossRef Google Scholar

    [10] 高少鹏, 徐柏青, 王君波, 等. 总有机碳分析仪准确测定湖泊沉积物中的TOC[J]. 分析试验室, 2019, 38(4): 413−416. doi: 10.13595/j.cnki.issn1000-0720.2018.072501

    CrossRef Google Scholar

    Gao S P, Xu B Q, Wang J B, et al. Measuring total organic carbon precisely in lake sediment in Tibetan Plateau by TOC analyzer[J]. Chinese Journal of Analysis Laboratory, 2019, 38(4): 413−416. doi: 10.13595/j.cnki.issn1000-0720.2018.072501

    CrossRef Google Scholar

    [11] 秦超, 李飞, 李贺, 等. 高频红外碳硫仪测定土壤中低含量的碳, 硫, 有机碳[J]. 当代化工研究, 2022(8): 47−49. doi: 10.3969/j.issn.1672-8114.2022.08.015

    CrossRef Google Scholar

    Qin C, Li F, Li H, et al. Determination of low content of carbon, sulfur and organic carbon in soil by high frequency infrared carbon and sulfur analyzer[J]. Modern Chemical Research, 2022(8): 47−49. doi: 10.3969/j.issn.1672-8114.2022.08.015

    CrossRef Google Scholar

    [12] Avramidis P, Bekiari V. Application of a catalytic oxidation method for the simultaneous determination of total organic carbon and total nitrogen in marine sediments and soils[J]. PLos One, 2021, 16(6): e0252308. doi: 10.1371/journal.pone.0252308

    CrossRef Google Scholar

    [13] Hu J, Loh P S, Chen Z, et al. Storage and dynamics of soil organic carbon in allochthonous-dominated and nitrogen-limited natural and planted mangrove forests in Southern Thailand[J]. Marine Pollution Bulletin, 2024, 200: 1.1−1.14. doi: 10.1016/j.marpolbul.2024.116064

    CrossRef Google Scholar

    [14] Ma H, Peng M, Yang Z, et al. Spatial distribution and driving factors of soil organic carbon in the Northeast China Plain: Insights from latest monitoring data[J]. Science of the Total Environment, 2024, 911: 168602. doi: 10.1016/j.scitotenv.2023.168602

    CrossRef Google Scholar

    [15] Hernández T D B, Slater B K, Shaffer J M, et al. Comparison of methods for determining organic carbon content of urban soils in Central Ohio[J]. Geoderma Regional, 2023, 34: e00680. doi: 10.1016/j.geodrs.2023.e00680

    CrossRef Google Scholar

    [16] 王巧环, 任玉芬, 孟龄, 等. 元素分析仪同时测定土壤中全氮和有机碳[J]. 分析试验室, 2013, 32(10): 41−45.

    Google Scholar

    Wang Q H, Ran Y F, Meng L, et al. Simultaneous determination of total nitrogen and organic carbon in soil with an elemental analyzer[J]. Chinese Journal of Analysis Laboratory, 2013, 32(10): 41−45.

    Google Scholar

    [17] 谭扬, 吴学丽, 侯立杰. 样品处理方法对海洋沉积物有机碳稳定同位素测定的影响[J]. 海洋环境科学, 2018, 37(5): 780−784. doi: 10.13634/j.cnki.mes.2018.05.023

    CrossRef Google Scholar

    Tan Y, Wu X L, Hou L J. The effects of sample treatment methods on marine sediment organic carbon stable isotope[J]. Marine Environmental Science, 2018, 37(5): 780−784. doi: 10.13634/j.cnki.mes.2018.05.023

    CrossRef Google Scholar

    [18] 祝孟博, 宋建中, 彭平安. 预处理过程对不同类型样品中有机碳含量和稳定碳同位素测定的影响[J]. 地球与环境, 2015, 43(4): 476−482. doi: 10.14050/j.cnki.1672-9250.2015.04.015

    CrossRef Google Scholar

    Zhu M B, Song J Z, Peng P A. Influences of pretreatment procedures on determination of total organic carbon and stable carbon isotope in different samples[J]. Earth and Environment, 2015, 43(4): 476−482. doi: 10.14050/j.cnki.1672-9250.2015.04.015

    CrossRef Google Scholar

    [19] 闵秀云, 武君, 高春亮, 等. 基于元素分析仪测定土壤有机碳的不同前处理方法对比研究[J]. 盐湖研究, 2020, 28(4): 64−70. doi: 10.12119/j.yhyj.202004008

    CrossRef Google Scholar

    Min X Y, Wu J, Gao C L, et al. The comparative study on different pretreatment methods of soil organic carbon determined by elemental analyzer[J]. Journal of Salt Lake Research, 2020, 28(4): 64−70. doi: 10.12119/j.yhyj.202004008

    CrossRef Google Scholar

    [20] 孙萱, 宋金明, 于颖, 等. 元素分析仪快速测定海洋沉积物TOC和TN的条件优化[J]. 海洋科学, 2014, 38(7): 14−19. doi: 10.11759/hykx20130801001

    CrossRef Google Scholar

    Sun X, Song J M, Yu Y, et al. A rapid method for determing the total organic carbon and total nitrogen in marine sediments with an elemental analyzer[J]. Marine Sciences, 2014, 38(7): 14−19. doi: 10.11759/hykx20130801001

    CrossRef Google Scholar

    [21] Apesteguia M, Plante A F, Virto I. Methods assessment for organic and inorganic carbon quantification in calcareous soils of the Mediterranean region[J]. Geoderma Regional, 2018, 12: 39−48. doi: 10.1016/j.geodrs.2017.12.001

    CrossRef Google Scholar

    [22] Matsui Y, Fujisaki W, Torimoto J, et al. Gold-coated silver capsule for elemental analyzer-isotope ratio mass spectrometer: Robust against pretreatment of rock material for organic carbon and δ13C analyses[J]. Geochemical Journal, 2021, 55(3): e1−e8. doi: 10.2343/geochemj.2.0626

    CrossRef Google Scholar

    [23] 孙辞, 崔杰华, 林桂凤, 等. 元素分析仪测定低含碳量土壤样品方法的改进[J]. 辽宁大学学报: 自然科学版, 2017, 44(4): 337−341. doi: 10.16197/j.cnki.lnunse.2017.04.010

    CrossRef Google Scholar

    Sun C, Cui J H, Lin G F, et al. Improvement of methodology for determining low carbon soil samples by elemental analyzer[J]. Journal of Liaoning University: Natural Sciences Edition, 2017, 44(4): 337−341. doi: 10.16197/j.cnki.lnunse.2017.04.010

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(6)

Article Metrics

Article views(67) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint