Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 6
Article Contents

LI Chaoqun, LI Lixiang, REN Yingjun, ZHAO Jinhua, HUANG Gang, ZHOU Shiyang, LIU Liping, JIANG Jingsi, LIANG Feng. Determination of 35 Antibiotics in Surface Water by High Performance Liquid Chromatography-Tandem Mass Spectrometry with Online Solid-Phase Extraction and Large-Volume Injection[J]. Rock and Mineral Analysis, 2024, 43(6): 945-956. doi: 10.15898/j.ykcs.202404050076
Citation: LI Chaoqun, LI Lixiang, REN Yingjun, ZHAO Jinhua, HUANG Gang, ZHOU Shiyang, LIU Liping, JIANG Jingsi, LIANG Feng. Determination of 35 Antibiotics in Surface Water by High Performance Liquid Chromatography-Tandem Mass Spectrometry with Online Solid-Phase Extraction and Large-Volume Injection[J]. Rock and Mineral Analysis, 2024, 43(6): 945-956. doi: 10.15898/j.ykcs.202404050076

Determination of 35 Antibiotics in Surface Water by High Performance Liquid Chromatography-Tandem Mass Spectrometry with Online Solid-Phase Extraction and Large-Volume Injection

  • Antibiotics are one of the emerging pollutants of concern in the world. Fast and efficient analytical methods for potential analysis of these pollutants are required, in order to control water quality and assure the safety of its use as a source of drinking water. However, there are few comprehensive methods to test multiple types of antibiotics in surface water. An online solid-phase extraction (SPE) of large-volume injection coupled with the high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was used for the simultaneous determination of 35 antibiotics in surface water, including 9 sulfonamides, 16 quinolones, 4 macrolides, 4 tetracyclines and 2 other classes. According to compound retention in SPE column and pH condition experiments, moxifloxacin and danofloxacin were confirmed as alkaline injection (0.1% ammonia solution), while the remaining 33 antibiotics were acidic injection (0.1% formic acid solution). The analytes were detected by multiple reaction monitoring (MRM) mode and were quantified by an internal standard method. The correlation coefficients of 35 antibiotics were greater than 0.995 with the calibration concentration range from 1−500ng/L. The method limits of detection (MLD) were low, ranging between 0.1−5.2ng/L. At 3 spiked concentrations of 5ng/L, 50ng/L, and 200ng/L, the relative standard deviation (RSD) of matrix labeling (n=6) were 1.65%−12.3%, 0.2%−10.4% and 0.05%−9.92%, respectively. The recovery rate of target compounds spike in the water samples were 62.1%−93.1%, 65.4%−127% and 65.9%−124%, respectively. The developed method only required a small sample volume (10mL) and simple pretreatment. When the acidic and basic injection volume were both 3mL, the total sample run time was only 30min including sample uptake, injection, online preconcentration, and detection. The developed method was applied to the analysis of 35 antibiotics in 21 surface waters, of which the detection rate of lincomycin reached 90.5%, and the highest content of ofloxacin reached 98.2ng/L. Compared with the conventional offline detection method, the detection results of the two methods were consistent, but the online detection method was simple, sensitive, accurate and fast, and capable of the real-time detection of water samples, making it suitable for residual analysis of trace antibiotics in surface water.

  • 加载中
  • [1] 黄业茹, 张烃, 翁燕波, 等. 水质环境热点污染物分析方法[M]. 北京: 化学工业出版社, 2014.

    Google Scholar

    Huang Y R, Zhang T, Weng Y B, et al. Analysis method of water quality and environmental hot spot pollutants[M]. Beijing: Chemical Industry Press, 2014.

    Google Scholar

    [2] Luo L, Wang G L, Wang Z M, et al. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology[J]. Science of the Total Environment, 2021, 788: 14788. doi: 10.1016/j.scitotenv.2021.147889

    CrossRef Google Scholar

    [3] 史晓, 卜庆伟, 吴东奎, 等. 地表水中10种抗生素SPE-HPLC-MS/MS检测方法的建立[J]. 环境化学, 2020, 39(4): 1075−1083. doi: 10.7524/j.issn.0254-6108.2019040102

    CrossRef Google Scholar

    Shi X, Bu Q W, Wu D K, et al. Simultaneous determination of 10 antibiotic residues in surface water by SPE-HPLC-MS/MS[J]. Environmental Chemistry, 2020, 39(4): 1075−1083. doi: 10.7524/j.issn.0254-6108.2019040102

    CrossRef Google Scholar

    [4] 牛颖, 安圣, 陈凯, 等. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展[J]. 岩矿测试, 2023, 42(1): 39−58. doi: 10.15898/j.cnki.11-2131/td.202210120192

    CrossRef Google Scholar

    Niu Y, An S, Chen K, et al. A review of current status and analysis methods of antibiotic contamination in groundwater in China (2012—2021)[J]. Rock and Mineral Analysis, 2023, 42(1): 39−58. doi: 10.15898/j.cnki.11-2131/td.202210120192

    CrossRef Google Scholar

    [5] Han Y R, Wang Q J, Mo C H, et al. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao[J]. Environmental Pollution, 2010, 158(7): 2350−2358. doi: 10.1016/j.envpol.2010.03.019

    CrossRef Google Scholar

    [6] Li B, Zhang T, Xu Z Y, et al. Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2009, 645(1−2): 64−72. doi: 10.1016/j.aca.2009.04.042

    CrossRef Google Scholar

    [7] Ye Z, Weinberg H S, Meyer M T. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry[J]. Analytical Chemistry, 2007, 79(3): 1135−1144. doi: 10.1021/ac060972a

    CrossRef Google Scholar

    [8] Ecke A, Schneider R J. Pitfalls in the immunochemical determination of β-Lactam antibiotics in water[J]. Multidisciplinary Digital Publishing Institute, 2021, 10(3): 298−310. doi: 10.3390/ANTIBIOTICS10030298

    CrossRef Google Scholar

    [9] Tian H J, Liu T, Mu G D, et al. Rapid and sensitive determination of trace fluoroquinolone antibiotics in milk by molecularly imprinted polymer-coated stainless steel sheet electrospray ionization mass spectrometry[J]. Talanta, 2020, 219: 121282. doi: 10.1016/j.talanta.2020.121282

    CrossRef Google Scholar

    [10] 王群. 电化学传感器检测水中氯霉素和氧氟沙星的研究[D]. 北京: 中国地质大学(北京), 2021.

    Google Scholar

    Wang Q. Study on the detection of chloramphenicol and ofloxacin in water by electrochemical sensor[D]. Beijing: China University of Geosciences (Beijing), 2021.

    Google Scholar

    [11] Lara F J, García-Campaa A M, Neusüss C, et al. Determination of sulfonamide residues in water samples by in-line solid-phase extraction-capillary electrophoresis[J]. Journal of Chromatography A, 2009, 1216(15): 3372−3379. doi: 10.1016/j.chroma.2009.01.097

    CrossRef Google Scholar

    [12] 周爱霞, 苏小四, 高松, 等. 高效液相色谱测定地下水、土壤及粪便中 4 种磺胺类抗生素[J]. 分析化学, 2014, 42(3): 397−402. doi: 10.3724/SP.J.1096.2014.30676

    CrossRef Google Scholar

    Zhou A X, Su X S, Gao S, et al. Determination of four sulfa antibiotics in groundwater, soil and excreta samples using high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2014, 42(3): 397−402. doi: 10.3724/SP.J.1096.2014.30676

    CrossRef Google Scholar

    [13] He K, Blaney L. Systematic optimization of an SPE with HPLC-FLD method for fluoroquinolone detection in wastewater[J]. Journal of Hazardous Materials, 2015, 282: 96−105. doi: 10.1016/j.jhazmat.2014.08.027

    CrossRef Google Scholar

    [14] Guan S P, Wu H, Yang L, et al. Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample[J]. Journal of Separation Science, 2020, 43(19): 3775−3784. doi: 10.1002/jssc.202000616

    CrossRef Google Scholar

    [15] 侯锦英, 孙志洪, 卢冠宇. 全自动固相萃取-超高效液相色谱-串联质谱法同时测定药企周边地表水中5种大环内酯类抗生素的残留量[J]. 理化检验(化学分册), 2023, 59(3): 332−336. doi: 10.11973/lhjy-hx202303012

    CrossRef Google Scholar

    Hou J Y, Sun Z H, Lu G Y. Simultaneous determination of residues of 5 macrolide antibiotics in surface water around pharmaceutical enterprises by ultra high performance liquid chromatography-tandem mass spectrometry with automatic solid phase extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(3): 332−336. doi: 10.11973/lhjy-hx202303012

    CrossRef Google Scholar

    [16] 范素素, 方烨渟, 蔡萌, 等. 水环境中磺胺类抗生素固相萃取-液质联用检测方法的建立及效果评估[J]. 环境工程学报, 2022, 16(8): 1−11. doi: 10.12030/j.cjee.202204010

    CrossRef Google Scholar

    Fan S S, Fang Y T, Cai M, et al. Establishment of solid phase extraction-liquid mass spectrometry method for detection of sulfa antibiotics in water environment and its effect evaluation[J]. Chinese Journal of Environmental Engineering, 2022, 16(8): 1−11. doi: 10.12030/j.cjee.202204010

    CrossRef Google Scholar

    [17] Tang P O, Ho C, Lai S L. High-throughput screening for multi-class veterinary drug residues in animal muscle using liquid chromatography/tandem mass spectrometry with on-line solid-phase extraction[J]. Rapid Communications in Mass Spectrometry, 2010, 20(17): 2565−2572. doi: 10.1002/rcm.2635

    CrossRef Google Scholar

    [18] 李明明. SPE-HPLC-MS/MS检测地表水中的萘啶酸, 吡哌酸, 培氟沙星, 氧氟沙星, 司帕沙星和加替沙星残留[J]. 中国测试, 2021, 47(4): 67−71. doi: 10.11857/j.issn.1674-5124.2020060020

    CrossRef Google Scholar

    Li M M. Determination of nalidixic acid, pipemidic acid, pefloxacin, ofloxacin, sparfloxacin and gatifloxacin residue in surface water by SPE-HPLC-MS/MS[J]. China Measurement & Test, 2021, 47(4): 67−71. doi: 10.11857/j.issn.1674-5124.2020060020

    CrossRef Google Scholar

    [19] 祁彦洁. 水中抗生素的检测方法与非生物衰减行为研究[D]. 北京: 中国地质大学(北京), 2014.

    Google Scholar

    Qi Y J. Determination and abiotic attenuation of antibiotics in water [D]. Beijing: China University of Geosciences (Beijing), 2014.

    Google Scholar

    [20] 营娇龙, 秦晓鹏, 郎杭, 等. 超高效液相色谱串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试, 2022, 41(3): 394−403. doi: 10.15898/j.cnki.11-2131/td.202111060168

    CrossRef Google Scholar

    Ying J L, Qin X P, Lang H, et al. Ultra-high performance for determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3): 394−403. doi: 10.15898/j.cnki.11-2131/td.202111060168

    CrossRef Google Scholar

    [21] 王蕴馨, 刘思洁, 李青, 等. 全自动固相萃取-超高效液相色谱串联质谱法测定生活饮用水及水源水中13种抗生素[J]. 中国卫生工程学, 2018, 17(3): 401−403. doi: 10.19937/j.issn.1671-4199.2018.03.034

    CrossRef Google Scholar

    Wang Y X, Liu S J, Li Q, et al. Determination of 13 antibiotics in drinking water and source water by automatic solid phase extraction-ultra-high performance liquid chromatography tandem mass spectrometry[J]. Chinese Journal of Public Health Engineering, 2018, 17(3): 401−403. doi: 10.19937/j.issn.1671-4199.2018.03.034

    CrossRef Google Scholar

    [22] Batt A L, Aga D S. Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination[J]. Analytical Chemistry, 2005, 77(9): 2940−2947. doi: 10.1021/ac048512

    CrossRef Google Scholar

    [23] Locatelli M A F, Fernando F S, Jardim W F. Determination of antibiotics in Brazilian surface waters using liquid chromatography-electrospray tandem mass spectrometry[J]. Archives of Environmental Contamination and Toxicology, 2011, 60(3): 385−393. doi: 10.1007/s00244-010-9550-1

    CrossRef Google Scholar

    [24] Garcia-Ac A, Segura P A, Viglino L. On-line solid-phase extraction of large-volume injections coupled to liquid chromatography-tandem mass spectrometry for the quantitation and confirmation of 14 selected trace organic contaminants in drinking and surface water[J]. Journal of Chromatography A, 2009, 1216(48): 8518−8527. doi: 10.1016/j.chroma.2009.10.015

    CrossRef Google Scholar

    [25] García-Galán M J, Diaz C M S, Barcelo D. Determination of 19 sulfonamides in environmental water samples by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS)[J]. Talanta, 2010, 81(1-2): 355−366. doi: 10.1016/j.talanta.2009.12.009

    CrossRef Google Scholar

    [26] Oscar J P, Carlos G, Juan V S, et al. Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid chromatography/tandem mass spectrometry[J]. Journal of Chromatography A, 2006, 1103(1): 83−93. doi: 10.1016/j.chroma.2005.10.073

    CrossRef Google Scholar

    [27] Singer H P, Stoob K, Goetz C W, et al. Fully automated online solid phase extraction coupled directly to liquid chromatography-tandem mass spectrometry. Quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters[J]. Journal of Chromatography A, 2005, 1097(1): 138−147. doi: 10.1016/j.chroma.2005.08.030

    CrossRef Google Scholar

    [28] Ding J, Ren N, Chen L. On-line coupling of solid-phase extraction to liquid chromatography-tandem mass spectrometry for the determination of macrolide antibiotics in environmental water[J]. Analytica Chimica Acta, 2009, 634(2): 215−221. doi: 10.1016/j.aca.2008.12.022

    CrossRef Google Scholar

    [29] Feitosa-Felizzola J, Temime B, Chiron S. Evaluating on-line solid-phase extraction coupled to liquid chromatography-ion trap mass spectrometry for reliable quantification and confirmation of several classes of antibiotics in urban wastewaters[J]. Journal of Chromatography A, 2007, 1164(1−2): 95−104. doi: 10.1016/j.chroma.2007.06.071

    CrossRef Google Scholar

    [30] 吴斌, 苏宇亮, 胡克武, 等. 在线固相萃取UHPLC-MS/MS法测定水中15 种抗生素[J]. 净水技术, 2022, 41(8): 163−168. doi: 10.15890/j.cnki.jsjs.2022.08.023

    CrossRef Google Scholar

    Wu B, Su Y L, Hu K W, et al. Determination of 15 antibiotics in water by UHPLC-MS/MS with online solid-phase extraction[J]. Water Purification Technology, 2022, 41(8): 163−168. doi: 10.15890/j.cnki.jsjs.2022.08.023

    CrossRef Google Scholar

    [31] Petrovic M, Hernado M D, Diaz C M S. Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: A review[J]. Journal of Chromatography A, 2005, 1067(1): 1−14. doi: 10.1016/j.chroma.2004.10.110

    CrossRef Google Scholar

    [32] 许燕娟, 沈斐, 魏焕平, 等. 在线固相萃取-超高效液相色谱-三重四极杆质谱快速测定地表水中磺胺类抗生素[J]. 环境监控与预警, 2022, 14(3): 49−54. doi: 10.3969/j.issn.16746732.2022.03.008

    CrossRef Google Scholar

    Xu Y J, Shen F, Wei H P, et al. Rapid and ultra-trace level analysis of sulfonamide antibiotics in surface water by on-line solid phase extraction with ultra-performance liquid chromatography-triple quadrupole mass spectrometry[J]. Environmental Monitoring and Forewarning, 2022, 14(3): 49−54. doi: 10.3969/j.issn.16746732.2022.03.008

    CrossRef Google Scholar

    [33] 宋焕杰, 谢卫民, 王俊, 等. SPE-UPLC-MS/MS同时测定水环境中4大类15种抗生素[J]. 分析试验室, 2022, 41(1): 50−54. doi: 10.13595/j.cnki.issn1000-0720.2021.022005

    CrossRef Google Scholar

    Song H J, Xie W M, Wang J, et al. Simultaneous determination of 15 antibiotics in 4 categories water environment by SPE-UPLC-MS/MS[J]. Chinese Journal of Analytical Laboratory, 2022, 41(1): 50−54. doi: 10.13595/j.cnki.issn1000-0720.2021.022005

    CrossRef Google Scholar

    [34] 孙慧婧, 李佩纹, 张蓓蓓, 等. 大体积直接进样-超高效液相色谱-三重四极杆质谱法测定水中7大类42种抗生素残留[J]. 色谱, 2022, 40(4): 333−342. doi: 10.3724/SP.J.1123.2021.08010

    CrossRef Google Scholar

    Sun H J, Li P W, Zhang B B, et al. Determination of 42 antibiotic residues in seven categories in water using large volume direct injection by ultra high performance liquid chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, 2022, 40(4): 333−342. doi: 10.3724/SP.J.1123.2021.08010

    CrossRef Google Scholar

    [35] 王娅南, 彭洁, 谢双, 等. 固相萃取-高效液相色谱-串联质谱法测定地表水中40种抗生素[J]. 环境化学, 2020, 39(1): 188−196. doi: 10.7524/j.issn.0254-6108.2019021304

    CrossRef Google Scholar

    Wang Y N, Peng J, Xie S, et al. Determination of 40 antibiotics in surface water by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2020, 39(1): 188−196. doi: 10.7524/j.issn.0254-6108.2019021304

    CrossRef Google Scholar

    [36] 高振刚, 梁延鹏, 曾鸿鹄, 等. 固相萃取-超高效液相色谱-三重四极杆质谱法测定水中15种抗生素残留[J]. 分析试验室, 2021, 40(8): 875−880. doi: 10.13595/j.cnki.issn1000-0720.2020.111302

    CrossRef Google Scholar

    Gao Z G, Liang Y P, Zeng H H, et al. Detection of 15 antibiotic in water by solid phase extraction-ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2021, 40(8): 875−880. doi: 10.13595/j.cnki.issn1000-0720.2020.111302

    CrossRef Google Scholar

    [37] Turiel E, Bordin G, Rodriguez A R. Determination of quinolones and fluoroquinolones in hospital sewage water by off-line and on-line, solid-phase extraction procedures coupled to HPLC-UV[J]. Journal of Separation Science, 2005, 28(3): 257−267. doi: 10.1002/jssc.200400018

    CrossRef Google Scholar

    [38] Claude R M. 使用沃特世的On-line SPE/LC/MS/MS技术分析饮用水源地水中的痕量优先污染物[J]. 环境化学, 2010, 29(5): 990−991. doi: 10.1631/jzus.A1000244

    CrossRef Google Scholar

    Claude R M. Analysis of trace pollutants in drinking water sources using the on-line SPE/LC/MS/MS technology of waters company[J]. Environmental Chemistry, 2010, 29(5): 990−991. doi: 10.1631/jzus.A1000244

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(3)

Article Metrics

Article views(85) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint