Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 2
Article Contents

MIAO Rui, ZHAO Zenghao, CAI Zeyuan, LIU Xu, WANG Huanye. Abundance and Distribution of GDGTs in Incubated Artificial Soils with No Fossil Pool[J]. Rock and Mineral Analysis, 2025, 44(2): 316-329. doi: 10.15898/j.ykcs.202405240120
Citation: MIAO Rui, ZHAO Zenghao, CAI Zeyuan, LIU Xu, WANG Huanye. Abundance and Distribution of GDGTs in Incubated Artificial Soils with No Fossil Pool[J]. Rock and Mineral Analysis, 2025, 44(2): 316-329. doi: 10.15898/j.ykcs.202405240120

Abundance and Distribution of GDGTs in Incubated Artificial Soils with No Fossil Pool

More Information
  • Glycerol dialkyl glycerol tetraethers (GDGTs) derived from microorganisms are important tools for the study of paleoclimate changes. Incubation experiments are helpful to clarify the mechanisms for the responses of GDGTs to environmental parameters, and to test the reliability of related climatic proxies. However, previous GDGT incubation experiments were mainly conducted on a single strain or suffered from the influence of a background signal, hampering systematically understanding the precise response of this biomarker to environmental factors in a soil environment. In this paper, artificial soils without GDGTs were incubated under the same temperature but different soil water content (SWC) conditions. The results showed that: (1) The abundances of GDGTs were positively correlated with SWC, but phosphate buffer could inhibit the production of GDGTs; (2) The branched and isoprenoid tetraether index (BIT), a soil moisture proxy developed in natural soils, was not significantly correlated with SWC; (3) 6-methyl brGDGTs were more abundant than 5-methyl brGDGTs, resulting in extremely high values of MBT'5ME and low MBT'. The results suggest that the BIT soil moisture proxy may indirectly (rather than directly) respond to SWC changes and confirm that high relative abundance of 6-methyl brGDGTs can affect the applicability of the MBT'5ME paleothermometer in soils. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202405240120.

  • 加载中
  • [1] Yang H, Pancost R D, Dang X Y, et al. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: Optimizing the paleo-reconstructions in semi-arid and arid regions[J]. Geochimica et Cosmochimica Acta, 2014, 126: 49−69.

    Google Scholar

    [2] 郑峰峰, 张传伦, 陈雨霏, 等. 支链四醚膜脂在中国土壤中的分布: 对MBT/CBT指标作为古环境指标可靠性的评估[J]. 中国科学: 地球科学, 2016, 46(6): 782−800. doi: 10.1360/07SCES-2015-0120

    CrossRef Google Scholar

    Zheng F F, Zhang C L, Chen Y F, et al. Branched tetraether lipids in Chinese soils: Evaluating the fidelity of MBT/CBT proxies as paleoenvironmental proxies[J]. Science China Earth Sciences, 2016, 46(6): 782−800. doi: 10.1360/07SCES-2015-0120

    CrossRef Google Scholar

    [3] Sun Q, Chu G Q, Liu M M, et al. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal[J]. Journal of Geophysical Research, 2011, 116: 12.

    Google Scholar

    [4] Li X M, Wang M D, Hou J Z. Centennial-scale climate variability during the past 2000 years derived from lacustrine sediment on the western Tibetan Plateau[J]. Quaternary International, 2019, 510: 65−75. doi: 10.1016/j.quaint.2018.12.018

    CrossRef Google Scholar

    [5] Russell J M, Hopmans E C, Loomis S E, et al. Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations[J]. Organic Geochemistry, 2018, 117: 56−69. doi: 10.1016/j.orggeochem.2017.12.003

    CrossRef Google Scholar

    [6] Zhao C, Rohling E J, Liu Z Y, et al. Possible obliquity-forced warmth in southern Asia during the last glacial stage[J]. Science Bulletin, 2021, 66(11): 1136−1145. doi: 10.1016/j.palaeo.2019.109381

    CrossRef Google Scholar

    [7] Yao Y, Zhao J J, Bauersachs T, et al. Effect of water depth on the TEX86 proxy in volcanic lakes of northeastern China[J]. Organic Geochemistry, 2019, 129: 88−98. doi: 10.1016/j.orggeochem.2019.01.014

    CrossRef Google Scholar

    [8] 李婧婧, 郑峰峰, 徐敏, 等. 长江中下游湖泊GDGTs分布及其环境意义[J]. 地球科学, 2023, 48(11): 4335−4348. doi: 10.3799/dqkx.2022.104

    CrossRef Google Scholar

    Li J J, Zheng F F, Xu M, et al. Distribution and environmental implication of GDGTs in lake surface sediments from middle and lower reaches of Yangtze River[J]. Earth Science, 2023, 48(11): 4335−4348. doi: 10.3799/dqkx.2022.104

    CrossRef Google Scholar

    [9] Xiao W J, Wang Y S, Liu Y S, et al. Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the mariana trench: Source and environmental implication[J]. Biogeosciences, 2020, 17: 2135−2148. doi: 10.5194/bg-17-2135-2020

    CrossRef Google Scholar

    [10] Wu W Y, Xu Y, Hou S, et al. Origin and preservation of archaeal intact polar tetraether lipids in deeply buried sediments from the South China Sea[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2019, 152: 8. doi: 10.1016/j.dsr.2019.103107

    CrossRef Google Scholar

    [11] Dong L, Li Z Y, Jia G D. Archaeal ammonia oxidation plays a part in late Quaternary nitrogen cycling in the South China Sea[J]. Earth and Planetary Science Letters, 2019, 509: 38−46. doi: 10.1016/j.jpgl.2018.12.023

    CrossRef Google Scholar

    [12] Rao Z G, Guo H C, Wei S K, et al. Influence of water conditions on peat brGDGTs: A modern investigation and its paleoclimatic implications[J]. Chemical Geology, 2022, 606: 12. doi: 10.1016/j.chemgeo.2022.120993

    CrossRef Google Scholar

    [13] Zheng Y, Yu S Y, Fan T Y, et al. Prolonged cooling interrupted the bronze age cultures in northeastern China 3500 years ago[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 574: 110461. doi: 10.1016/j.palaeo.2021.110461

    CrossRef Google Scholar

    [14] Zang J J, Yang H, Zhang J H, et al. Application of microbial membrane tetraether lipids in speleothems[J]. Frontiers in Ecology and Evolution, 2023, 11: 14. doi: 10.3389/fevo.2023.1117599

    CrossRef Google Scholar

    [15] Zhao J J, Huang Y S, Yao Y, et al. Calibrating branched GDGTs in bones to temperature and precipitation: Application to Alaska chronological sequences[J]. Quaternary Science Reviews, 2020, 240: 12. doi: 10.1016/j.quascirev.2020.106371

    CrossRef Google Scholar

    [16] Inglis G N, Bhattacharya T, Hemingway J D, et al. Biomarker approaches for reconstructing terrestrial environmental change[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 369−394. doi: 10.1146/annurev-earth-032320-095943

    CrossRef Google Scholar

    [17] 姚鹏, 于志刚, 赵美训. GDGT在全球气候变化研究中的应用进展[J]. 中国海洋大学学报(自然科学版), 2011, 41(5): 71−78. doi: 10.16441/j.cnki.hdxb.2011.05.012

    CrossRef Google Scholar

    Yao P, Yu Z G, Zhao M X. Advances in application of GDGT in global climate change study[J]. Journal of Ocean University of China, 2011, 41(5): 71−78. doi: 10.16441/j.cnki.hdxb.2011.05.012

    CrossRef Google Scholar

    [18] Peterse F, Schouten S, van Der Meer J, et al. Distribution of branched tetraether lipids in geothermally heated soils: Implications for the MBT/CBT temperature proxy[J]. Organic Geochemistry, 2009, 40(2): 201−205. doi: 10.1016/j.orggeochem.2008.10.010

    CrossRef Google Scholar

    [19] Weijers J W H, Schouten S, van Den Donker J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 703−713. doi: 10.1016/j.gca.2006.10.003

    CrossRef Google Scholar

    [20] Zheng F F, Chen Y F, Xie W, et al. Diverse biological sources of core and in tact polar isoprenoid GDGTs in terrace soils from southwest of China: Implications for their use as environmental proxies[J]. Chemical Geology, 2019, 522: 108−120. doi: 10.1016/j.chemgeo.2019.05.017

    CrossRef Google Scholar

    [21] Dang X Y, Yang H, Naafs B D A, et al. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils[J]. Geochimica et Cosmochimica Acta, 2016, 189: 24−36. doi: 10.1016/j.gca.2016.06.004

    CrossRef Google Scholar

    [22] Wang H Y, Liu W G, Zhang C L. Dependence of the cyclization of branched tetraethers on soil moisture in alkaline soils from arid-subhumid China: Implications for palaeorainfall reconstructions on the Chinese Loess Plateau[J]. Biogeosciences, 2014, 11(23): 6755−6768. doi: 10.5194/bg-11-6755-2014

    CrossRef Google Scholar

    [23] Dirghangi S S, Pagani M, Hren M T, et al. Distribution of glycerol dialkyl glycerol tetraethers in soils from two environmental transects in the USA[J]. Organic Geochemistry, 2013, 59: 49−60. doi: 10.1016/j.orggeochem.2013.03.009

    CrossRef Google Scholar

    [24] Wang H Y, Liu W G, Zhang C L, et al. Branched and isoprenoid tetraether (BIT) index traces water content along two marsh-soil transects surrounding Lake Qinghai: Implications for paleo-humidity variation[J]. Organic Geochemistry, 2013, 59: 75−81. doi: 10.1016/j.orggeochem.2013.03.011

    CrossRef Google Scholar

    [25] de Jonge C, Hopmans E C, Zell C I, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2014, 141: 97−112. doi: 10.1016/j.gca.2014.06.013

    CrossRef Google Scholar

    [26] Menges J, Huguet C, Alcañiz J M, et al. Influence of water availability in the distributions of branched glycerol dialkyl glycerol tetraether in soils of the Iberian Peninsula[J]. Biogeosciences, 2014, 11(10): 2571−2581. doi: 10.5194/bg-11-2571-2014

    CrossRef Google Scholar

    [27] Halamka T A, Mcfarlin J M, Younkin A D, et al. Oxygen limitation can trigger the production of branched GDGTs in culture[J]. Geochemical Perspectives Letters, 2021, 19: 36−39. doi: 10.7185/geochemlet.2132

    CrossRef Google Scholar

    [28] Zeng Z Y, Xiao W J, Zheng F F, et al. Enhanced production of highly methylated brGDGTs linked to anaerobic bacteria from sediments of the Mariana Trench[J]. Frontiers in Marine Science, 2023, 10: 1233560.

    Google Scholar

    [29] Huguet A, Meador T B, Laggoun-Défarge F, et al. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concen-trations[J]. Geochimica et Cosmochimica Acta, 2017, 203: 103−116. doi: 10.1016/j.gca.2017.01.012

    CrossRef Google Scholar

    [30] Huguet A, Fosse C, Laggoun-Defarge F, et al. Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): A436. doi: 10.1016/j.orggeochem.2010.02.015

    CrossRef Google Scholar

    [31] Chen Y F, Zheng F F, Yang H, et al. The Production of diverse brGDGTs by an acidobacterium providing a physiological basis for paleoclimate proxies[J]. Geochimica et Cosmochimica Acta, 2022, 337: 155−165. doi: 10.1016/j.gca.2022.08.033

    CrossRef Google Scholar

    [32] Halamka T A, Raberg J H, Mcfarlin J M, et al. Production of diverse brGDGTs by acidobacterium solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis[J]. Geobiology, 2022, 21(1): 102−118. doi: 10.1111/gbi.12525

    CrossRef Google Scholar

    [33] Weber Y, Damsté J S S, Zopfi J, et al. Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(43): 10926−10931. doi: 10.1073/pnas.1805186115

    CrossRef Google Scholar

    [34] Chen Y F, Li J J, Chen S Z, et al. Potential influence of bacterial community structure on the distribution of brGDGTs in surface sediments from Yangtze River Estuary to East China Sea[J]. Chemical Geology, 2024, 647: 15. doi: 10.1016/j.chemgeo.2024.121934

    CrossRef Google Scholar

    [35] de Jonge C, Radujkovic D, Sigurdsson B D, et al. Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils[J]. Organic Geochemistry, 2019, 137: 13. doi: 10.1016/j.orggeochem.2019.07.006

    CrossRef Google Scholar

    [36] de Jonge C, Kuramae E E, Radujkovic D, et al. The influ-ence of soil chemistry on branched tetraether lipids in mid- and high latitude soils: Implications for brGDGT-based paleothermometry[J]. Geochimica et Cosmochimica Acta, 2021, 310: 95−112. doi: 10.1016/j.gca.2021.06.037

    CrossRef Google Scholar

    [37] Guo J J, Ma T, Liu N N, et al. Soil pH and aridity influence distributions of branched tetraether lipids in grassland soils along an aridity transect[J]. Organic Geochemistry, 2022, 164: 104347. doi: 10.1016/j.orggeochem.2021.104347

    CrossRef Google Scholar

    [38] Huguet A, Francez A J, Jusselme M D, et al. A climatic chamber experiment to test the short term effect of increasing temperature on branched GDGT distribution in Sphagnum peat[J]. Organic Geochemistry, 2014, 73: 109−112. doi: 10.1016/j.orggeochem.2014.05.010

    CrossRef Google Scholar

    [39] Huguet A, Fosse C, Laggoun-Défarge F, et al. Effects of a short-term experimental microclimate warming on the abundance and distribution of branched GDGTs in a French peatland[J]. Geochimica et Cosmochimica Acta, 2013, 105: 294−315. doi: 10.1016/j.gca.2012.11.037

    CrossRef Google Scholar

    [40] Ofiti N O E, Huguet A, Hanson P J, et al. Peatland warming influences the abundance and distribution of branched tetraether lipids: Implications for temperature reconstruction[J]. Science of the Total Environment, 2024, 924: 171666. doi: 10.1016/j.scitotenv.2024.171666

    CrossRef Google Scholar

    [41] Martínez-Sosa P, Tierney J E, Meredith L K. Controlled lacustrine microcosms show a brGDGT response to environmental perturbations[J]. Organic Geochemistry, 2020, 145: 8. doi: 10.1016/j.orggeochem.2020.104041

    CrossRef Google Scholar

    [42] Martínez-Sosa P, Tierney J E. Lacustrine brGDGT response to microcosm and mesocosm incubations[J]. Organic Geochemistry, 2019, 127: 12−22. doi: 10.1016/j.orggeochem.2018.10.011

    CrossRef Google Scholar

    [43] Ajallooeian F, Deng L, Lever M A, et al. Seasonal temperature dependency of aquatic branched glycerol dialkyl glycerol tetraethers: A mesocosm approach[J]. Organic Geochemistry, 2024, 189: 104742. doi: 10.1016/j.orggeochem.2024.104742

    CrossRef Google Scholar

    [44] Chen Y F, Zheng F F, Chen S Z, et al. Branched GDGT production at elevated temperatures in anaerobic soil microcosm incubations[J]. Organic Geochemistry, 2018, 117: 12−21. doi: 10.1016/j.orggeochem.2017.11.015

    CrossRef Google Scholar

    [45] Zhao J J, Tsai V C, Huang Y S. A nonlinear model for resolving the temperature bias of branched glycerol dialkyl glycerol tetraether (brGDGT) temperature proxies[J]. Geochimica et Cosmochimica Acta, 2022, 327: 158−169. doi: 10.1016/j.gca.2022.04.022

    CrossRef Google Scholar

    [46] Hopmans E C, Schouten S, Damsté J S S. The effect of improved chromatography on GDGT-based palaeoproxies[J]. Organic Geochemistry, 2016, 93: 1−6. doi: 10.1016/j.orggeochem.2015.12.006

    CrossRef Google Scholar

    [47] Huguet C, Hopmans E C, Febo-Ayala W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids[J]. Organic Geochemistry, 2006, 37(9): 1036−1041. doi: 10.1016/j.orggeochem.2006.05.008

    CrossRef Google Scholar

    [48] Peterse F, van Der Meer J, Schouten S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J]. Geochimica et Cosmochimica Acta, 2012, 96: 215−229. doi: 10.1016/j.gca.2012.08.011

    CrossRef Google Scholar

    [49] de Jonge C, Stadnitskaia A, Fedotov A, et al. Impact of riverine suspended particulate matter on the branched glycerol dialkyl glycerol tetraether composition of lakes: The outflow of the Selenga River in Lake Baikal (Russia)[J]. Organic Geochemistry, 2015, 83−84: 241−252. doi: 10.1016/j.orggeochem.2015.04.004

    CrossRef Google Scholar

    [50] Hopmans E C, Weijers J W H, Schefuß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1): 107−116. doi: 10.1016/j.jpgl.2004.05.012

    CrossRef Google Scholar

    [51] Turich C, Freeman K H. Archaeal lipids record paleosalinity in hypersaline systems[J]. Organic Geochemistry, 2011, 42(9): 1147−1157. doi: 10.1016/j.orggeochem.2011.06.002

    CrossRef Google Scholar

    [52] Wang H Y, Liu W G, Zhang C L, et al. Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai—Tibetan Plateau[J]. Organic Geochemistry, 2013, 54: 69−77. doi: 10.1016/j.orggeochem.2012.09.011

    CrossRef Google Scholar

    [53] Law K P, Zhang C L L. Current progress and future trends in mass spectrometry-based archaeal lipidomics[J]. Organic Geochemistry, 2019, 134: 45−61. doi: 10.1016/j.orggeochem.2019.04.001

    CrossRef Google Scholar

    [54] 战楠, 孙青, 李琪, 等. 地质环境中生物标志物GDGTs分析技术研究进展[J]. 岩矿测试, 2024, 43(1): 30−46. doi: 10.15898/j.ykcs.202306100077

    CrossRef Google Scholar

    Zhan N, Sun Q, Li Q, et al. Research progress in analytical methods of biomarker GDGTs in geological environments[J]. Rock and Mineral Analysis, 2024, 43(1): 30−46. doi: 10.15898/j.ykcs.202306100077

    CrossRef Google Scholar

    [55] Becker K W, Lipp J S, Zhu C, et al. An improved method for the analysis of archaeal and bacterial ether core lipids[J]. Organic Geochemistry, 2013, 61: 34−44. doi: 10.1016/j.orggeochem.2013.05.007

    CrossRef Google Scholar

    [56] Yang H, Lü X X, Ding W H, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT') in soils from an altitudinal transect at Mount Shennongjia[J]. Organic Geochemistry, 2015, 82: 42−53. doi: 10.1016/j.orggeochem.2015.02.003

    CrossRef Google Scholar

    [57] Wang H Y, Liu W G, Lu H X, et al. Potential degradation effect on paleo-moisture proxies based on the relative abundance of archaeal vs. bacterial tetraethers in loess-paleosol sequences on the Chinese Loess Plateau[J]. Quaternary International, 2017, 436: 173−180. doi: 10.1016/j.quaint.2016.11.004

    CrossRef Google Scholar

    [58] Peaple M D, Beverly E J, Garza B, et al. Identifying the drivers of GDGT distributions in alkaline soil profiles within the Serengeti ecosystem[J]. Organic Geochemistry, 2022, 169: 14. doi: 10.1016/j.orggeochem.2022.104433

    CrossRef Google Scholar

    [59] de Jonge C, Guo J J, Hallberg P, et al. The impact of soil chemistry, moisture and temperature on branched and isoprenoid GDGTs in soils: A study using six globally distributed elevation transects[J]. Organic Geochemistry, 2024, 187: 15. doi: 10.1016/j.orggeochem.2023.104706

    CrossRef Google Scholar

    [60] Wu J, Yang H, Pancost R D, et al. Variations in dissolved O2 in a Chinese lake drive changes in microbial communities and impact sedimentary GDGT distributions[J]. Chemical Geology, 2021, 579: 12. doi: 10.1016/j.chemgeo.2021.120348

    CrossRef Google Scholar

    [61] 晁倩, 赵晖, 侯居峙, 等. 中国干旱-半干旱区表土bGDGTs与气候环境因子数据再分析[J]. 第四纪研究, 2022, 42(2): 449−460. doi: 10.11928/j.issn.1001-7410.2022.02.10

    CrossRef Google Scholar

    Chao Q, Zhao H, Hou J Z, et al. Reanalysis of surface soils and climatic and environmental factors in arid and semi-arid regions of China[J]. Quaternary Sciences, 2022, 42(2): 449−460. doi: 10.11928/j.issn.1001-7410.2022.02.10

    CrossRef Google Scholar

    [62] Zang J J, Lei Y Y, Yang H. Distribution of glycerol ethers in Turpan soils: Implications for use of GDGT-based proxies in hot and dry regions[J]. Frontiers of Earth Science, 2018, 12(4): 862−876. doi: 10.1007/s11707-018-0722-z

    CrossRef Google Scholar

    [63] Wang H Y, An Z S, Lu H X, et al. Calibrating bacterial tetraether distributions towards in situ soil temperature and application to a loess-paleosol sequence[J]. Quaternary Science Reviews, 2020, 231: 106172. doi: 10.1016/j.quascirev.2020.106172

    CrossRef Google Scholar

    [64] Naafs B D A, Gallego-Sala A V, Inglis G N, et al. Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration[J]. Organic Geochemistry, 2017, 106: 48−56. doi: 10.1016/j.orggeochem.2017.01.009

    CrossRef Google Scholar

    [65] Wang H Y, Liu Z H, Zhao H, et al. New calibration of terrestrial brGDGT paleothermometer deconvolves distinct temperature responses of two isomer sets[J]. Earth and Planetary Science Letters, 2024, 626: 118497. doi: 10.1016/j.jpgl.2023.118497

    CrossRef Google Scholar

    [66] Chen C H, Bai Y, Fang X M, et al. Evaluating the potential of soil bacterial tetraether proxies in westerlies dominating western Pamirs, Tajikistan and implications for paleoenvironmental reconstructions[J]. Chemical Geology, 2021, 559: 12. doi: 10.1016/j.chemgeo.2020.119908

    CrossRef Google Scholar

    [67] van Bree L G J, Peterse F, Baxter A J, et al. Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake[J]. Biogeosciences, 2020, 17(21): 5443−5463. doi: 10.5194/bg-17-5443-2020

    CrossRef Google Scholar

    [68] Kou Q Q, Zhu L P, Ju J T, et al. Influence of salinity on glycerol dialkyl glycerol tetraether-based indicators in Tibetan Plateau lakes: Implications for paleotemperature and paleosalinity reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601: 12. doi: 10.1016/j.palaeo.2022.111127

    CrossRef Google Scholar

    [69] Bittner L, de Jonge C, Gil-Romera G, et al. A holocene temperature (brGDGT) record from Garba Guracha, a high-altitude lake in Ethiopia[J]. Biogeosciences, 2022, 19(23): 5357−5374. doi: 10.5194/bg-19-5357-2022

    CrossRef Google Scholar

    [70] Crampton-Flood E D, Tierney J E, Peterse F, et al. BayMBT: A Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats[J]. Geochimica et Cosmochimica Acta, 2020, 268: 142−159. doi: 10.1016/j.gca.2019.09.043

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(318) PDF downloads(82) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint