Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 2
Article Contents

ZHAO Hongkun, LIU Yaxuan, MA Shengming, ZHANG Yanfei, ZHANG Pengpeng, LI Qiang, LI Zhenqing, CHEN Qishen, LI Yong, GU Xue, CHEN Hongqiang. Determination of Major Elements in Small-Weight Soil and Sediment Samples by X-Ray Fluorescence Spectrometry with Pressed-Powder Pellets[J]. Rock and Mineral Analysis, 2025, 44(2): 305-315. doi: 10.15898/j.ykcs.202403040030
Citation: ZHAO Hongkun, LIU Yaxuan, MA Shengming, ZHANG Yanfei, ZHANG Pengpeng, LI Qiang, LI Zhenqing, CHEN Qishen, LI Yong, GU Xue, CHEN Hongqiang. Determination of Major Elements in Small-Weight Soil and Sediment Samples by X-Ray Fluorescence Spectrometry with Pressed-Powder Pellets[J]. Rock and Mineral Analysis, 2025, 44(2): 305-315. doi: 10.15898/j.ykcs.202403040030

Determination of Major Elements in Small-Weight Soil and Sediment Samples by X-Ray Fluorescence Spectrometry with Pressed-Powder Pellets

More Information
  • The analysis of small-weight samples utilizing X-ray fluorescence spectrometry (XRF) poses a pivotal technical challenge in determining the chemical composition of valuable and scarce materials. Furthermore, the application of XRF to verify the homogeneity of reference materials has sparked debates regarding the minimum sample weight. At present, most of the geological samples (including reference material) are at the particle size of 74μm (−200 mesh) and the conventional sample weight is approximately 4g for XRF analysis with pressed-powder pellets. Here, 0.1g weight soil or sediment was used for pressed-powder pellet preparation. The diameter of the XRF spectrometry sample box mask was changed to 12mm, and the diameter of the field view light barrier was reduced to 10mm. Based on the previously optimized instrumental measurement conditions, we successfully established a 0.1g sample weight analytical method for the quantification of ten major elements (SiO2, Al2O3, TFe2O3, MgO, Cao, Na2O, K2O, Mn, Ti, and P) utilizing wavelength dispersive XRF, which significantly reduced the necessary sample weight. This method 1employed a diverse range of 32 geochemical reference materials, encompassing variou types and content gradients. The detection limit of the 0.1g sample weight analysis method was between 14μ/g and 0.35%, and the precisioniitalic>=12) was less than 3.9%. Through comparative analysis, the results of the erence materials were all within the standard value range, and the absolute value of relative error (|RE|) was between 0 and 15.7%. There was no significant difference with the 4g sample weight analysis results (|RE| ranged from 0.3% to 28.3%). The practical sample results determined by the method of 0.1g sample and the conventional method of 4g sample are consistent. The established XRF method for the 0.1g weight sample is reliable.

  • 加载中
  • [1] Krishna A K, Khanna T C, Mohan K R. Rapid quantitative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 122: 165−171. doi: 10.1016/j.sab.2016.07.004

    CrossRef Google Scholar

    [2] 赵红坤, 郝亚波, 田有国, 等. 熔融制样-X射线荧光光谱法测定小取样量地球化学样品中的主量元素[J]. 物探与化探, 2020, 44(4): 778−783. doi: 10.11720/wtyht.2020.0042

    CrossRef Google Scholar

    Zhao H K, Hao Y B, Tian Y G, et al. Melting sample preparation-X-ray fluorescence spectrometry was used to measure a small amount of soil certified reference material[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 778−783. doi: 10.11720/wtyht.2020.0042

    CrossRef Google Scholar

    [3] 曾小家, 李世杰, 李雄耀, 等. 月壤主量元素无损分析方案预研究[J]. 矿物岩石地球化学通报, 2015, 34(6): 1282−1286. doi: 10.3969/j.issn.1007-2802.2015.06.021

    CrossRef Google Scholar

    Zeng X J, Li S J, Li X Y, et al. Method for nondestructive measurement of major elements of lunar soil samples[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(6): 1282−1286. doi: 10.3969/j.issn.1007-2802.2015.06.021

    CrossRef Google Scholar

    [4] Ichikawa S, Nakamura T. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 96: 40−50. doi: 10.1016/j.sab.2014.04.002

    CrossRef Google Scholar

    [5] 金秉慧. 地质标准物质十年回顾[J]. 岩矿测试, 2003, 22(3): 188−200.

    Google Scholar

    Jin B H. Geological certified reference materials: A review since 1992[J]. Rock and Mineral Analysis, 2003, 22(3): 188−200.

    Google Scholar

    [6] 王毅民, 高玉淑, 王晓红. 中国地质标准物质研制和标准方法制定的成果与思考[J]. 岩矿测试, 2006, 25(1): 55−63.

    Google Scholar

    Wang Y M, Gao Y S, Wang X H. A review on study of geochemical reference materials and reference methods in China[J]. Rock and Mineral Analysis, 2006, 25(1): 55−63.

    Google Scholar

    [7] 王毅民, 王晓红, 何红蓼, 等. 地质标准物质的最小取样量问题[J]. 地质通报, 2009, 28(6): 804−807.

    Google Scholar

    Wang Y M, Wang X H, He H L, et al. The minimum sampling mass of geostandards reference materials[J]. Geological Bulletin of China, 2009, 28(6): 804−807.

    Google Scholar

    [8] 王晓红, 王毅民, 高玉淑, 等. 地质标准物质均匀性检验方法评介与探讨[J]. 岩矿测试, 2010, 29(6): 735−741.

    Google Scholar

    Wang X H, Wang Y M, Gao Y S, et al. A review on homogeneity testing techniques for geochemical reference materials in China[J]. Rock and Mineral Analysis, 2010, 29(6): 735−741.

    Google Scholar

    [9] 赵红坤, 于阗, 肖志博, 等. 粉末压片-X射线荧光光谱法在地球化学标准物质均匀性检验中的应用研究[J]. 光谱学与光谱分析, 2021, 41(3): 755−762. doi: 10.3964/j.issn.1000-0593(2021)03-0755-08

    CrossRef Google Scholar

    Zhao H K, Yu T, Xiao Z B, et al. Application of powder tableting-X-ray fluorescence spectroscopy in the uniformity test of geochemical reference standards[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 755−762. doi: 10.3964/j.issn.1000-0593(2021)03-0755-08

    CrossRef Google Scholar

    [10] 王毅民, 邓赛文, 李松, 等. X射线荧光光谱在地球化学调查中的应用评介[J]. 冶金分析, 2020, 40(10): 50−62. doi: 10.13228/j.boyuan.issn1000-7571.011157

    CrossRef Google Scholar

    Wang Y M, Deng S W, Li S, et al. Review on the application of X-ray fluorescence spectrometry in geochemical survey[J]. Metallurgical Analysis, 2020, 40(10): 50−62. doi: 10.13228/j.boyuan.issn1000-7571.011157

    CrossRef Google Scholar

    [11] 白金峰, 杜雪苗, 郭心玮, 等. 应用地球化学样品分析测试技术进展[J]. 物探化探计算技术, 2022, 44(6): 842−853. doi: 10.3969/j.issn.1001-1749.2022.06.15

    CrossRef Google Scholar

    Bai J F, Du X M, Guo X W, et al. Advancement of sample analysis and testing technologies in applied geochemistry[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44(6): 842−853. doi: 10.3969/j.issn.1001-1749.2022.06.15

    CrossRef Google Scholar

    [12] 刘玉纯, 林庆文, 马玲. X射线荧光光谱技术在地质分析中的应用及发展动态[J]. 化学分析计量, 2019, 28(4): 125−131. doi: 10.3969/j.issn.1008-6145.2019.04.030

    CrossRef Google Scholar

    Liu Y C, Lin Q W, Ma L. Applications and development of X-ray fluorescence spectrometers in geological analysis[J]. Chemical Analysis and Meterage, 2019, 28(4): 125−131. doi: 10.3969/j.issn.1008-6145.2019.04.030

    CrossRef Google Scholar

    [13] 李小莉, 王毅民, 邓赛文, 等. 中国X射线荧光光谱分析的地学应用60年[J]. 光谱学与光谱分析, 2023, 43(10): 2989−2998. doi: 10.3964/j.issn1000-0593(2023)10-2989-10

    CrossRef Google Scholar

    Li X L, Wang Y M, Deng S W, et al. Application of X-ray fluorescence spectrometry in geological and mineral analysis for 60 years[J]. Spectroscopy and Spectral Analysis, 2023, 43(10): 2989−2998. doi: 10.3964/j.issn1000-0593(2023)10-2989-10

    CrossRef Google Scholar

    [14] 李小莉, 王毅民, 高新华, 等. 1960—2020年中国X射线荧光光谱分析评述文献评介[J]. 理化检验(化学分册), 2023, 59(10): 1231−1240. doi: 10.11973/lhjy-hx202310024

    CrossRef Google Scholar

    Li X L, Wang Y M, Gao X H, et al. Evaluation of review literatures of X-ray fluorescence spectrometry analysis in China from 1960 to 2020[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(10): 1231−1240. doi: 10.11973/lhjy-hx202310024

    CrossRef Google Scholar

    [15] 谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6): 700−716.

    Google Scholar

    Xie X J, Ren T X, Xi X H, et al. The implementation of the regional geochemistry-national reconnaissance program (RGNR) in China in the past thirty years[J]. Acta Geoscientica Sinica, 2009, 30(6): 700−716.

    Google Scholar

    [16] 王学求. 勘查地球化学近十年进展[J]. 矿物岩石地球化学通报, 2013, 32(2): 190−197.

    Google Scholar

    Wang X Q. A decade of exploration geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2): 190−197.

    Google Scholar

    [17] 王学求. 勘查地球化学80年来重大事件回顾[J]. 中国地质, 2013, 40(1): 322−330.

    Google Scholar

    Wang X Q. Landmark events of exploration geochemistry in the past 80 years[J]. Geology in China, 2013, 40(1): 322−330.

    Google Scholar

    [18] 王学求. 全球地球化学基准: 了解过去, 预测未来[J]. 地学前缘, 2012, 19(3): 7−18.

    Google Scholar

    Wang X Q. Global geochemical baselines: Understanding the past and predicting the future[J]. Earth Science Frontiers, 2012, 19(3): 7−18.

    Google Scholar

    [19] 王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469−1480.

    Google Scholar

    Wang X Q, Zhou J, Xu S F, et al. China soil geochemical baselines networks: Data characteristics[J]. Geology in China, 2016, 43(5): 1469−1480.

    Google Scholar

    [20] 王毅民, 张学华, 邓赛文, 等. X射线荧光光谱在海洋地质及矿产资源调查分析中的应用评介[J]. 冶金分析, 2020, 40(10): 63−75. doi: 10.13228/j.boyuan.issn1000-7571.011127

    CrossRef Google Scholar

    Wang Y M, Zhang X H, Deng S W, et al. Review on the application of X-ray fluorescence spectrometry in marine geology and mineral resources survey[J]. Metallurgical Analysis, 2020, 40(10): 63−75. doi: 10.13228/j.boyuan.issn1000-7571.011127

    CrossRef Google Scholar

    [21] 王毅民, 邓赛文, 王祎亚, 等. X射线荧光光谱在矿石分析中的应用评介——总论[J]. 冶金分析, 2020, 40(10): 32−49. doi: 10.13228/j.boyuan.issn1000-7571.011164

    CrossRef Google Scholar

    Wang Y M, Deng S W, Wang Y Y, et al. Review on the application of X-ray fluorescence spectrometry in ores’ analysis[J]. Metallurgical Analysis, 2020, 40(10): 32−49. doi: 10.13228/j.boyuan.issn1000-7571.011164

    CrossRef Google Scholar

    [22] 邓赛文, 王毅民, 孙晓飞, 等. X射线荧光光谱技术在铁矿石分析中的应用文献评介[J]. 冶金分析, 2019, 39(11): 30−49. doi: 10.13228/j.boyuan.issn1000-7571.010901

    CrossRef Google Scholar

    Deng S W, Wang Y M, Sun X F, et al. Literature review on application of X-ray fluorescence spectrometry in analysis of iron ores[J]. Metallurgical Analysis, 2019, 39(11): 30−49. doi: 10.13228/j.boyuan.issn1000-7571.010901

    CrossRef Google Scholar

    [23] 李小莉, 邓赛文, 王毅民, 等. X射线荧光光谱在碳酸盐类矿石分析中的应用文献评介[J]. 冶金分析, 2022, 42(3): 33−46. doi: 10.13228/j.boyuan.issn1000-7571.011552

    CrossRef Google Scholar

    Li X L, Deng S W, Wang Y M, et al. Review on application of X-ray fluorescence spectrometry in carbonate ore analysis[J]. Metallurgical Analysis, 2022, 42(3): 33−46. doi: 10.13228/j.boyuan.issn1000-7571.011552

    CrossRef Google Scholar

    [24] 李松, 邓赛文, 王毅民, 等. X射线荧光光谱在锰矿石分析中的应用文献评介[J]. 冶金分析, 2021, 41(3): 18−26. doi: 10.13228/j.boyuan.issn1000-7571.011289

    CrossRef Google Scholar

    Li S, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in analysis of manganese ore[J]. Metallurgical Analysis, 2021, 41(3): 18−26. doi: 10.13228/j.boyuan.issn1000-7571.011289

    CrossRef Google Scholar

    [25] 殷绍泉, 邓赛文, 王毅民, 等. X射线荧光光谱在铜矿石分析中的应用文献评介[J]. 冶金分析, 2019, 39(7): 43−52. doi: 10.13228/j.boyuan.issn1000-7571.010634

    CrossRef Google Scholar

    Yin S Q, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in copper ore analysis[J]. Metallurgical Analysis, 2019, 39(7): 43−52. doi: 10.13228/j.boyuan.issn1000-7571.010634

    CrossRef Google Scholar

    [26] 李松, 邓赛文, 王毅民, 等. X射线荧光光谱技术在铬铁矿石分析中的应用文献评介[J]. 冶金分析, 2019, 39(8): 67−75. doi: 10.13228/j.boyuan.issn1000-7571.010698

    CrossRef Google Scholar

    Li S, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in analysis of chromite ore[J]. Metallurgical Analysis, 2019, 39(8): 67−75. doi: 10.13228/j.boyuan.issn1000-7571.010698

    CrossRef Google Scholar

    [27] 邓赛文, 王祎亚, 王毅民. 中国磷矿石分析文献评介[J]. 岩矿测试, 2011, 30(3): 384−390.

    Google Scholar

    Deng S W, Wang Y Y, Wang Y M. Review on literatures of phosphate ores analysis in China[J]. Rock and Mineral Analysis, 2011, 30(3): 384−390.

    Google Scholar

    [28] 王祎亚, 邓赛文, 王毅民, 等. X射线荧光光谱在痕量和超轻元素分析中的应用评介[J]. 冶金分析, 2020, 40(10): 12−31. doi: 10.13228/j.boyuan.issn1000-7571.011156

    CrossRef Google Scholar

    Wang Y Y, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in trace and ultra-light elements analysis[J]. Metallurgical Analysis, 2020, 40(10): 12−31. doi: 10.13228/j.boyuan.issn1000-7571.011156

    CrossRef Google Scholar

    [29] 刘建坤, 郑荣华, 骆宏玉, 等. 粉末压片-X射线荧光光谱法测定矿石中高含量铷[J]. 理化检验(化学分册), 2014, 50(11): 1451−1452.

    Google Scholar

    Liu J K, Zheng R H, Luo H Y, et al. Determination of high content rubidium in ores by X-ray fluorescence spectrometry with pressed powder pellet[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(11): 1451−1452.

    Google Scholar

    [30] 曾江萍, 郑智慷, 张楠, 等. 粉末压片制样-X射线荧光光谱法测定锂云母中铷、铯及主量组分[J]. 冶金分析, 2019, 39(10): 73−77. doi: 10.13228/j.boyuan.issn1000-7571.010714

    CrossRef Google Scholar

    Zeng J P, Zheng Z K, Zhang N, et al. Determination of rubidium, cesium and major components in lithium mica by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2019, 39(10): 73−77. doi: 10.13228/j.boyuan.issn1000-7571.010714

    CrossRef Google Scholar

    [31] 霍红英, 邹敏, 张天益, 等. 粉末压片-能量色散X射线荧光光谱法测定钛精矿中6种组分[J]. 冶金分析, 2019, 39(9): 26−31. doi: 10.13228/j.boyuan.issn1000-7571.010629

    CrossRef Google Scholar

    Huo H Y, Zou M, Zhang T Y, et al. Determination of six components in titanium concentrate by energy dispersive X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2019, 39(9): 26−31. doi: 10.13228/j.boyuan.issn1000-7571.010629

    CrossRef Google Scholar

    [32] 修凤凤, 樊勇, 李俊雨, 等. 粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J]. 岩矿测试, 2018, 37(5): 526−532. doi: 10.15898/j.cnki.11-2131/td.201704170061

    CrossRef Google Scholar

    Xiu F F, Fan Y, Li J Y, et al. Determination of 18 minor elements in the structural superimposed halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2018, 37(5): 526−532. doi: 10.15898/j.cnki.11-2131/td.201704170061

    CrossRef Google Scholar

    [33] 吕胜男, 卢兵, 赵文志, 等. X射线荧光光谱法同时测定土壤和水系沉积物中23种主次痕量组分[J]. 理化检验(化学分册), 2023, 59(7): 764−770. doi: 10.11973/lhjy-hx202307004

    CrossRef Google Scholar

    Lyu S N, Lu B, Zhao W Z, et al. Simultaneous determination of 23 major, minor and trace components in soil and stream sediment by X-ray fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(7): 764−770. doi: 10.11973/lhjy-hx202307004

    CrossRef Google Scholar

    [34] 钟坚海, 叶华欣, 李泳涛, 等. 压片制样-波长色散X射线荧光光谱法测定土壤和沉积物中主、次及微量元素[J]. 中国无机分析化学, 2022, 12(6): 34−39. doi: 10.3969/j.issn.2095-1035.2022.06.006

    CrossRef Google Scholar

    Zhong J H, Ye H X, Li Y T, et al. Determination of major, minor and micro elements in soils and sediments by wavelength dispersive X-ray fluorescence spectrometry with pressed powder pellet[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(6): 34−39. doi: 10.3969/j.issn.2095-1035.2022.06.006

    CrossRef Google Scholar

    [35] 杏艳, 田渭花, 刘锦华, 等. 单波长激发能量色散X射线荧光光谱法测定土壤和沉积物中19种元素[J]. 环境化学, 2022, 41(10): 3182−3195. doi: 10.7524/j.issn.0254-6108.2022031003

    CrossRef Google Scholar

    Xing Y, Tian W H, Liu J H, et al. Determination of 19 elements in soils and sediments by single-wavelength excitation energy dispersive X-ray fluorescence spectrometry[J]. Environmental Chemistry, 2022, 41(10): 3182−3195. doi: 10.7524/j.issn.0254-6108.2022031003

    CrossRef Google Scholar

    [36] 夏传波, 钱惠芬, 田兴磊, 等. X射线荧光光谱法测定新研制土壤标准物质中11种元素的含量[J]. 理化检验(化学分册), 2022, 58(7): 811−817. doi: 10.11973/lhjy-hx202207013

    CrossRef Google Scholar

    Xia C B, Qian H F, Tian X L, et al. Determination of 11 elements in newly developed soil reference materials by X-ray fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(7): 811−817. doi: 10.11973/lhjy-hx202207013

    CrossRef Google Scholar

    [37] 李强, 张学华, 黄雪华, 等. 高压粉末制样-X射线荧光光谱法测定海洋沉积物中28种组分[J]. 冶金分析, 2022, 42(6): 9−17. doi: 10.13228/j.boyuan.issn1000-7571.011614

    CrossRef Google Scholar

    Li Q, Zhang X H, Huang X H, et al. Determination of twenty-eight components in marine sediment by X-ray fluorescence spectrometry with high-pressure powder pelleting preparation[J]. Metallurgical Analysis, 2022, 42(6): 9−17. doi: 10.13228/j.boyuan.issn1000-7571.011614

    CrossRef Google Scholar

    [38] 杨立坤, 毛雪飞, 郑磊, 等. 单波长激发-能量色散X射线荧光光谱法测定土壤全量硅、铝、铁、钾、钠、钙、镁、锰、磷、钛、硫[J]. 中国无机分析化学, 2023, 13(12): 1429−1436. doi: 10.3969/j.issn.2095-1035.2023.12.023

    CrossRef Google Scholar

    Yang L K, Mao X F, Zheng L, et al. Determination of total silicon, aluminum, iron, potassium, sodium, calcium, magnesium, manganese, phosphorus, titanium and sulfur in soil by single wavelength excitation-energy dispersive X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(12): 1429−1436. doi: 10.3969/j.issn.2095-1035.2023.12.023

    CrossRef Google Scholar

    [39] Xue D S, Su B X, Zhang D P, et al. Quantitative verification of 1∶100 diluted fused glass beads for X-ray fluorescence analysis of geological specimens[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(12): 2826−2833. doi: 10.1039/d0ja00273a

    CrossRef Google Scholar

    [40] 耿梅梅, 张丽萍, 王久荣, 等. 样品粒径、制样方法对波长色散X射线荧光光谱法测定土壤样品中19种元素的影响[J]. 中国土壤与肥料, 2023(6): 239−250. doi: 10.11838/sfsc.1673-6257.22283

    CrossRef Google Scholar

    Geng M M, Zhang L P, Wang J R, et al. Effects of sample particle size and preparation on the determination of 19 elements in soil samples by wavelength dispersive X-ray fluorescence spectrometry[J]. Soil and Fertilizer Sciences in China, 2023(6): 239−250. doi: 10.11838/sfsc.1673-6257.22283

    CrossRef Google Scholar

    [41] 王祎亚, 王毅民. 超细标准物质与超细样品分析研究进展[J]. 光谱学与光谱分析, 2021, 41(3): 696−703. doi: 10.3964/j.issn.1000-0593(2021)03-0696-08

    CrossRef Google Scholar

    Wang Y Y, Wang Y M. Research progress of ultra-fine reference materials and ultra-fine samples[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 696−703. doi: 10.3964/j.issn.1000-0593(2021)03-0696-08

    CrossRef Google Scholar

    [42] 袁良经, 贾云海, 程大伟. X射线荧光光谱分析方法的检出限测量方法研究[J]. 光谱学与光谱分析, 2021, 43(2): 412−418. doi: 10.3964/j.issn.1000-0593(2023)02-0412-07

    CrossRef Google Scholar

    Yuan L J, Jia Y H, Cheng D W. Study on methods of detection limit in XRF spectrometry[J]. Spectroscopy and Spectral Analysis, 2021, 43(2): 412−418. doi: 10.3964/j.issn.1000-0593(2023)02-0412-07

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(7)

Article Metrics

Article views(232) PDF downloads(48) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint