Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 5
Article Contents

NING Ze, XU Lei, LIN Xuehui, ZHANG Yuanyuan, ZHANG Yong. Quantitative Identification of Detrital Minerals by Mineral Characteristic Automatic Analysis System and Error Analysis with Traditional Microscopic Identification[J]. Rock and Mineral Analysis, 2024, 43(5): 713-722. doi: 10.15898/j.ykcs.202310190163
Citation: NING Ze, XU Lei, LIN Xuehui, ZHANG Yuanyuan, ZHANG Yong. Quantitative Identification of Detrital Minerals by Mineral Characteristic Automatic Analysis System and Error Analysis with Traditional Microscopic Identification[J]. Rock and Mineral Analysis, 2024, 43(5): 713-722. doi: 10.15898/j.ykcs.202310190163

Quantitative Identification of Detrital Minerals by Mineral Characteristic Automatic Analysis System and Error Analysis with Traditional Microscopic Identification

More Information
  • The analysis of detrital minerals is widely used in the study of sediment sources and material diffusion, and is of great significance in analyzing sedimentary dynamic environment and oceanic dynamic characteristics. However, for a long time, the acquisition of detrital mineral data has relied mainly on optical microscopes as tools and manual identification, which is labor-intensive and inefficient. In order to obtain scientific and effective mineral identification data in a timely fashion, a thermal field emission scanning electron microscopy with energy dispersive spectroscopy attached and an automated mineral identification and characterization system (AMICS) were used. For the first sample, 25 mineral species were identified by the AMICS system and 25 mineral species were identified by artificial identification with stereomicroscope and polarizing microscope. For the second sample, 26 mineral species were identified by the AMICS system, and 27 mineral species were identified by artificial identification. The two methods identified similar types of detrital minerals, and the absolute error of each mineral content was less than 5%. The AMICS system can be used to identify oxides (limonite, chromite, etc.), phosphates (apatite, etc.), sulfates (barite, etc.), sulfides (pyrite, etc.), carbonates (calcite, dolomite, etc.), and some silicates (zircon, titanite, olivine, quartz, potassium feldspar, sodium feldspar, garnet group, etc.) accurately but it is difficult to accurately identify polymorphic and isomorphic detrital minerals based solely on mineral chemical composition. The problem of layered silicate minerals easily falling off layer by layer during sample preparation needs to be solved.

  • 加载中
  • [1] 高建华, 李军, 汪亚平, 等. 鸭绿江河口及近岸海域沉积物中重矿物组成、分布及其沉积动力学意义[J]. 海洋学报, 2009, 31(3): 84−94. doi: 10.3321/j.issn:0253-4193.2009.03.010

    CrossRef Google Scholar

    Gao J H, Li J, Wang Y P, et al. Heavy mineral distribution sand their implications for sediment dynamics in the Yalu Estuary and its adjacent sea area[J]. Acta Ceanoiogica Sinica, 2009, 31(3): 84−94. doi: 10.3321/j.issn:0253-4193.2009.03.010

    CrossRef Google Scholar

    [2] 李超, 杨守业, 毕磊, 等. “从源到汇”的时间尺度——根据U系同位素计算海洋沉积物的搬运时间[J]. 海洋地质前沿, 2015, 31(2): 26−31.

    Google Scholar

    Li C, Yang S Y, Bi L, et al. Time scale of “south to sink” process-sediment transport time calculation based on U-series isotopes[J]. Marine Geology Frontiers, 2015, 31(2): 26−31.

    Google Scholar

    [3] 范代读, 王扬扬, 吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515−528.

    Google Scholar

    Fan D D, Wang Y Y, Wu Y J. Advances in provenance studies of Changjiang riverine sediments[J]. Advances in Earth Science, 2012, 27(5): 515−528.

    Google Scholar

    [4] 董晋琨, 杨眉, 吴志远, 等. 系统矿物学数据特征分析及数据库建设[J]. 吉林大学学报(地球科学版), 2019, 49(3): 727−736.

    Google Scholar

    Dong J K, Yang M, Wu Z Y, et al. Systematic mineralogy data characteristics and database construction[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3): 727−736.

    Google Scholar

    [5] 张文, 田承涛, 翁孝卿, 等. 矿物解离分析系统在磷石膏工艺矿物学研究中的应用[J]. 矿产综合利用, 2022, 2(1): 205−210. doi: 10.3969/j.issn.1000-6532.2022.01.030

    CrossRef Google Scholar

    Zhang W, Tian C T, Weng X Q, et al. Research on the process mineralogy of phosphogypsum using mineral liberation analysis system[J]. Multipurpose Utilization of Mineral Resources, 2022, 2(1): 205−210. doi: 10.3969/j.issn.1000-6532.2022.01.030

    CrossRef Google Scholar

    [6] 温利刚, 贾木欣, 付强, 等. 基于扫描电子显微镜-X射线能谱的矿物自动分析系统(BPMA)测定高纯石英砂中杂质矿物[J]. 中国无机分析化学, 2023, 13(8): 845−850. doi: 10.3969/j.issn.2095-1035.2023.08.009

    CrossRef Google Scholar

    Wen L G, Jia M X, Fu Q, et al. Determination of impurity minerals high-purity quartz by SEM-EDS-based automated process mineralogy analyzing system (BPMA)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 845−850. doi: 10.3969/j.issn.2095-1035.2023.08.009

    CrossRef Google Scholar

    [7] 邓宇林, 郭绪磊, 罗明明, 等. 基于扫描电镜和CT成像技术的碳酸盐岩溶蚀作用微观结构和变化规律研究[J]. 中国岩溶, 2022, 41(5): 698−707. doi: 10.11932/karst20220503

    CrossRef Google Scholar

    Deng Y L, Guo X L, Luo M M, et al. Study on the microstructure and variation law of carbonate rock dissolution based on scanning electron microscopy and CT imaging technology[J]. Carsologica Sinica, 2022, 41(5): 698−707. doi: 10.11932/karst20220503

    CrossRef Google Scholar

    [8] Gottlieb P, Wilkie G, Sutherland D, et al. Using quantitative electron microscopy for process mineralogy applications[J]. JOM, 2000, 52(4): 24−25. doi: 10.1007/s11837-000-0126-9

    CrossRef Google Scholar

    [9] Ying G. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser[J]. Journal of Minerals and Materials Characterization and Engineering, 2003, 2(1): 33−41. doi: 10.4236/jmmce.2003.21003

    CrossRef Google Scholar

    [10] Fandrich R, Ying G, Burrows D, et al. Modern SEM-based mineral liberation analysis[J]. International Journal of Mineral Processing, 2007, 84(1−4): 310−320. doi: 10.1016/j.minpro.2006.07.018

    CrossRef Google Scholar

    [11] Krolop P, Jantschke A, Gilbricht S, et al. Mineralogical imaging for characterization of the per Geijer apatite iron ores in the Kiruna district, Northern Sweden: A comparative study of mineral liberation analysis and Raman imaging[J]. Multidisciplinary Digital Publishing Institute, 2019, 9(9): 544.

    Google Scholar

    [12] Hrstka T, Gottlieb P, Skála R, et al. Automated mineralogy and petrology—Applications of TESCAN integrated mineral analyzer (TIMA)[J]. Journal of Geosciences, 2018, 63(1): 47−63.

    Google Scholar

    [13] 李秋杭, 谢远云, 康春国, 等. 基于人工和TIMA自动化方法的松花江水系重矿物组成: 对源-汇物源示踪的指示[J]. 海洋地质与第四纪地质, 2022, 42(3): 170−183.

    Google Scholar

    Li Q H, Xie Y Y, Kang C G, et al. Heavy mineral composition of the Songhua River system identified by manual and TIMA automatic methods and implications for provenance tracing[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 170−183.

    Google Scholar

    [14] 陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345−368.

    Google Scholar

    Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345−368.

    Google Scholar

    [15] 张涛, 宋文磊, 陈倩, 等. 矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用[J]. 岩矿测试, 2023, 42(4): 748−759.

    Google Scholar

    Zhang T, Song W L, Chen Q, et al. Application of automated quantitative mineral analysis system in process mineralogy of low-grade copper slag[J]. Rock and Mineral Analysis, 2023, 42(4): 748−759.

    Google Scholar

    [16] Keulen N, Malkki S N, Graham S. Automated quantitative mineralogy applied to metamorphic rocks[J]. Minerals, 2020, 10(1): 1−29.

    Google Scholar

    [17] Graham S, Keulen N. Nanoscale automated quantitative mineralogy: A 200-nm quantitative mineralogy assess-ment of fault gouge using mineralogic[J]. Minerals, 2019, 9(11): 665. doi: 10.3390/min9110665

    CrossRef Google Scholar

    [18] Hou X Z, Yang Z F, Wang Z J. The occurrence characteristics and recovery potential of middle-heavy rare earth elements in the Bayan Obo deposit, Northern China[J]. Acta Geochim, 2020, 39(1): 139−154. doi: 10.1007/s11631-019-00331-3

    CrossRef Google Scholar

    [19] Zhou J, Gu Y. Geometallurgical characterization and automated mineralogy of gold ores[M]. Elsevier, 2016: 95−111.

    Google Scholar

    [20] 朴海善, 杨勇, 唐云, 等. 低品位碳酸锰矿工艺矿物学研究[J]. 矿物学报, 2023, 43(2): 191−200. doi: 10.16461/j.cnki.1000-4734.2022.42.100

    CrossRef Google Scholar

    Piao H S, Yang Y, Tang Y, et al. Process mineralogy of the low-grade manganese carbonate ore[J]. Acta Mineralogica Sinica, 2023, 43(2): 191−200. doi: 10.16461/j.cnki.1000-4734.2022.42.100

    CrossRef Google Scholar

    [21] 张瀚之, 鹿化煜, 周亚利, 等. 渭河流域沉积矿物组合定量分析及示踪[J]. 沉积学报, 2022, 40(4): 944−956. doi: 10.14027/j.issn.1000⁃0550.2022.021

    CrossRef Google Scholar

    Zhang H Z, Lu H Y, Zhou Y L, et al. Quantitative analysis of the clastic mineral composition in sediments from the Weihe River Basin by scanning electron microscope and its implication for provenance[J]. Acta Sedimentologica Sinica, 2022, 40(4): 944−956. doi: 10.14027/j.issn.1000⁃0550.2022.021

    CrossRef Google Scholar

    [22] 朱丹, 桂博艺, 王芳, 等. AMICS测试技术在铌矿中的应用——以竹溪铌矿为例[J]. 有色金属(选矿部分), 2021(3): 1−7. doi: 10.3969/j.issn.1671-9492.2021.03.001

    CrossRef Google Scholar

    Zhu D, Gui B Y, Wang F, et al. Application of the advanced mineral identification and characterization system (AMICS) in the Nb deposit: A case study of the Zhuxi Nb deposit[J]. Nonferrous Metals (Mineral Processing Section), 2021(3): 1−7. doi: 10.3969/j.issn.1671-9492.2021.03.001

    CrossRef Google Scholar

    [23] 孙晓旭, 冯坚, 李超, 等. 自动矿物识别和表征系统在辽东吉祥峪稀土矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2023, 42(6): 1120−1131. doi: 10.15898/j.ykcs.202203270061

    CrossRef Google Scholar

    Sun X X, Feng J, Li C, et al. Application of automated mineral identification and characterization system to identify minerals and occurrences of elements in Jixiangyu rare earth deposit of Eastern Liaoning[J]. Rock and Mineral Analysis, 2023, 42(6): 1120−1131. doi: 10.15898/j.ykcs.202203270061

    CrossRef Google Scholar

    [24] 曹玉璐, 曾宇轲, 张元元. 基于扫描电子显微镜的重矿物物源分析方法对比[J]. 现代地质, 2023, 37(2): 475−485. doi: 10.19657/j.geoscience.1000-8527.2022.032

    CrossRef Google Scholar

    Cao Y L, Zeng Y K, Zhang Y Y. Comparison of heavy mineral provenance analysis methods based on SEM[J]. Geoscience, 2023, 37(2): 475−485. doi: 10.19657/j.geoscience.1000-8527.2022.032

    CrossRef Google Scholar

    [25] 邓刘敏, 葛祥坤, 范光, 等. 基于扫描电镜-能谱仪的矿物定量分析——以AMICS为例[J]. 世界核地质科学, 2023, 40(1): 98−105. doi: 10.3969/j.issn.1672-0636.2023.01.010

    CrossRef Google Scholar

    Deng L M, Ge X K, Fan G, et al. Quantitative analysis of minerals based on scanning electron microscopy and energy dispersive spectrometry[J]. World Nuclear Geoscience, 2023, 40(1): 98−105. doi: 10.3969/j.issn.1672-0636.2023.01.010

    CrossRef Google Scholar

    [26] 王濮, 潘兆橹, 翁玲宝. 系统矿物学[M]. 北京: 地质出版社, 1982.

    Google Scholar

    Wang P, Pan Z L, Weng L B. Systematic mineralogy[M]. Beijing: Geological Publishing House, 1982.

    Google Scholar

    [27] 潘兆橹. 结晶学及矿物学[M]. 北京: 地质出版社, 1993.

    Google Scholar

    Pan Z L. Crystallography and mineralogy[M]. Beijing: Geological Publishing House, 1993.

    Google Scholar

    [28] 常丽华, 陈曼云, 金巍. 透明矿物薄片鉴定手册[M]. 北京: 地质出版社, 2006.

    Google Scholar

    Chang L H, Chen M Y, Jin W. Manual for identification of transparent mineral thin slices[M]. Beijing: Geological Publishing House, 2006.

    Google Scholar

    [29] 刘显凡, 汪灵, 李慧, 等. 角闪石族和辉石族矿物的系统矿物学分类命名[J]. 矿物学报, 2015, 35(1): 19−28.

    Google Scholar

    Liu X F, Wang L, Li H, et al. Systematic mineralogical classifications and nomenclatures of amphibole and pyroxene group minerals[J]. Acta Mineralogica Sinica, 2015, 35(1): 19−28.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(355) PDF downloads(52) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint