Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 4
Article Contents

ZHANG Shouchuan, LIU Kai, WANG Luyao, ZHU Wei, DENG Yuefei, YU Chenghua. Identifying the Hydrochemical Characteristics and Genetic Mechanism of Medium-Low Temperature Fluoride-Enriched Geothermal Groundwater in the Hongjiang—Qianshan Fault of Jiangxi Province[J]. Rock and Mineral Analysis, 2024, 43(4): 568-581. doi: 10.15898/j.ykcs.202403030028
Citation: ZHANG Shouchuan, LIU Kai, WANG Luyao, ZHU Wei, DENG Yuefei, YU Chenghua. Identifying the Hydrochemical Characteristics and Genetic Mechanism of Medium-Low Temperature Fluoride-Enriched Geothermal Groundwater in the Hongjiang—Qianshan Fault of Jiangxi Province[J]. Rock and Mineral Analysis, 2024, 43(4): 568-581. doi: 10.15898/j.ykcs.202403030028

Identifying the Hydrochemical Characteristics and Genetic Mechanism of Medium-Low Temperature Fluoride-Enriched Geothermal Groundwater in the Hongjiang—Qianshan Fault of Jiangxi Province

More Information
  • The Hongjiang—Qianshan fault has abundant medium-low temperature geothermal resources. However, the excessive fluorine concentration in geothermal groundwater restricts the development and utilization of geothermal resources. 20 samples were collected in this region for identifying the genetic mechanism of medium-low temperature of fluoride-enriched geothermal resources. The hydrochemical results indicate that the hydrochemical characteristic of high fluoride geothermal groundwater is HCO3-Na. The groundwater environment is alkaline and weakly alkaline. The fluoride concentration in geothermal groundwater is 2−12 times greater than the upper limited value, while those in the surface water and shallow groundwater are within the permittable threshold range. The isotopic results reveal that the recharge elevations and circulation depth are 797−2186m and 893−1893m, respectively. Quartz provides the most reliable estimations of reservoir temperatures, ranging from 79.4℃ to 113.1℃. The fluoride in geothermal groundwater originates from the rock weathering and mineral dissolution. Cation exchange and alkaline condition are the main influence factors for fluorine enrichment. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.yk202403030028.

  • 加载中
  • [1] 汪集暘, 庞忠和, 程远志, 等. 全球地热能的开发利用现状与展望[J]. 科技导报, 2023, 41(12): 5−11.

    Google Scholar

    Wang J Y, Pang Z H, Cheng Y Z, et al. Current state, utilization and prospective of global geothermal energy[J]. Science & Technology Review, 2023, 41(12): 5−11.

    Google Scholar

    [2] 胡虹羽, 卢国平, 李岩, 等. 琼北地区地热水中氟的富集规律[J]. 环境化学, 2023, 42(5): 1633−1641.

    Google Scholar

    Hu H Y, Lu G P, Li Y, et al. Study on enrichment of fluorine in geothermal water in Qiongbei area[J]. Environmental Chemistry, 2023, 42(5): 1633−1641.

    Google Scholar

    [3] 张浩然, 刘凯, 张垚垚, 等. 江西芦溪县南部大地热流特征[J]. 地球学报, 2024, 45(1): 25−37. doi: 10.3975/cagsb.2023.101001

    CrossRef Google Scholar

    Zhang H R, Liu K, Zhang Y Y, et al. Characteristics of terrestrial heat flow in the south of Luxi County, Jiangxi Province[J]. Acta Geoscientica Sinica, 2024, 45(1): 25−37. doi: 10.3975/cagsb.2023.101001

    CrossRef Google Scholar

    [4] 王安东, 孙占学, 蔺文静, 等. 江西省地热资源赋存特征及潜力评价[J]. 中国地质, 2023, 50(6): 1646−1654. doi: 10.12029/gc20210909003

    CrossRef Google Scholar

    Wang A D, Sun Z X, Lin W J, et al. Occurrence features of geothermal resources and geothermal potential assessment of Jiangxi Province[J]. Geology in China, 2023, 50(6): 1646−1654. doi: 10.12029/gc20210909003

    CrossRef Google Scholar

    [5] 张垚垚, 刘凯, 童珏, 等. 江西吉安钱山地区地热资源特征及热源机制[J]. 地球学报, 2024, 45(1): 39−52. doi: 10.3975/cagsb.2022.122701

    CrossRef Google Scholar

    Zhang Y Y, Liu K, Tong J, et al. Characteristics and heat source mechanism of geothermal resources in Qianshan area of Ji’an, Jiangxi Province[J]. Acta Geoscientica Sinica, 2024, 45(1): 39−52. doi: 10.3975/cagsb.2022.122701

    CrossRef Google Scholar

    [6] 刘峰, 王贵玲, 张薇, 等. 江西宁都县北部大地热流特征及地热资源成因机制[J]. 地质通报, 2020, 39(12): 1883−1890. doi: 10.12097/j.issn.1671-2552.2020.12.002

    CrossRef Google Scholar

    Liu F, Wang G L, Zhang W, et al. Terrestrial heat flow and geothermal genesis mechanism of geothermal resources in Northern Ningdu County, Jiangxi Province[J]. Geological Bulletin of China, 2020, 39(12): 1883−1890. doi: 10.12097/j.issn.1671-2552.2020.12.002

    CrossRef Google Scholar

    [7] Yang J, Huo Z, Li X, et al. Hot weather event-based characteristics of double-early rice heat risk: A study of Jiangxi Province, South China[J]. Ecological Indicators, 2020, 113(1): 106148.

    Google Scholar

    [8] 马峰, 王贵玲, 张薇, 等. 古潜山热储开发对地面沉降的影响机制研究[J]. 中国地质, 2021, 48(1): 40−51. doi: 10.12029/gc20210103

    CrossRef Google Scholar

    Ma F, Wang G L, Zhang W, et al. Influence mechanism of ancient buried hill geothermal development on land subsidence[J]. Geology in China, 2021, 48(1): 40−51. doi: 10.12029/gc20210103

    CrossRef Google Scholar

    [9] 樊柄宏, 叶海龙, 白细民, 等. 地热流体动态对温汤地热田地热水灌采平衡的指示意义[J]. 地质论评, 2024, 70(S1): 195−198.

    Google Scholar

    Fan B H, Ye H L, Bai X M, et al. Indicative significance of geothermal fluid dynamics on the balance of geothermal water injection and extraction in Wentang geothermal field[J]. Geological Review, 2024, 70(S1): 195−198.

    Google Scholar

    [10] Cigna F, Tapete D, Garduño-Monroy H V, et al. Wide-area InSAR survey of surface deformation in urban areas and geothermal fields in the eastern Trans—Mexican volcanic belt, Mexico[J]. Remote Sensing, 2019, 11(20): 2341. doi: 10.3390/rs11202341

    CrossRef Google Scholar

    [11] 张永红, 刘冰, 吴宏安, 等. 雄安新区2012—2016年地面沉降InSAR监测[J]. 地球科学与环境学报, 2018, 40(5): 652−662. doi: 10.3969/j.issn.1672-6561.2018.05.013

    CrossRef Google Scholar

    Zhang Y H, Liu B, Wu H A, et al. Ground subsidence in Xiong’an New Area from 2012 to 2016 monitored by InSAR technique[J]. Journal of Earth Sciences and Environment, 2018, 40(5): 652−662. doi: 10.3969/j.issn.1672-6561.2018.05.013

    CrossRef Google Scholar

    [12] 邹鹏飞, 王彩会, 杜建国, 等. 地热水系统采灌方案模拟优化研究——以苏北农村清洁能源供暖示范区为例[J]. 水文地质工程地质, 2023, 50(4): 59−72.

    Google Scholar

    Zou P F, Wang C H, Du J G, et al. A study of simulation and optimization of the production-reinjection scheme of a geothermal water system: A case study of the geothermal space heating demonstration area in Northern Jiangsu countryside[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 59−72.

    Google Scholar

    [13] 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1−9.

    Google Scholar

    Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1−9.

    Google Scholar

    [14] 李娜娜, 陶诚, 孔彦龙, 等. 全球地热发电现状与研究进展[J]. 热力发电, 2024, 53(6): 1−11.

    Google Scholar

    Li N N, Tao C, Kong Y L, et al. Status and research progress of geothermal power generation development and utilization[J]. Thermal Power Generation, 2024, 53(6): 1−11.

    Google Scholar

    [15] 陈劲松, 周金龙, 陈云飞, 等. 新疆喀什地区地下水氟的空间分布规律及其富集因素分析[J]. 环境化学, 2020, 39(7): 1800−1808.

    Google Scholar

    Chen J S, Zhou J L, Chen Y F, et al. Spatial distribution and enrichment factors of groundwater fluoride in Kashgar region, Xinjiang[J]. Environmental Chemistry, 2020, 39(7): 1800−1808.

    Google Scholar

    [16] 韩江涛, 牛璞, 刘立家, 等. 地热资源与地震活动共生深部驱动机制研究现状与展望[J]. 吉林大学学报(地球科学版), 2023, 53(6): 1950−1968.

    Google Scholar

    Han J T, Niu P, Liu L J, et al. Research status and prospect of deep driving mechanism of co-occurrence of geothermal resources and seismic activities[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(6): 1950−1968.

    Google Scholar

    [17] 任宇, 曹文庚, 潘登, 等. 2010—2020年黄河下游河南典型灌区浅层地下水中砷和氟的演化特征及变化机制[J]. 岩矿测试, 2021, 40(6): 846−859. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106005

    CrossRef Google Scholar

    Ren Y, Cao W G, Pan D, et al. Evolution characteristics and change mechanism of arsenic and fluorine in shallow groundwater from a typical irrigation area in lower reaches of the Yellow River (Henan) in 2010—2020[J]. Rock and Mineral Analysis, 2021, 40(6): 846−859. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106005

    CrossRef Google Scholar

    [18] 吕晓立, 郑跃军, 刘可, 等. 兰州不同城镇功能区地下水氟赋存特征及影响因素[J]. 水文地质工程地质, 2024, 51(2): 215−226.

    Google Scholar

    Lyu X L, Zheng Y J, Liu K, et al. Characteristic and driving factors of fluoride in groundwater in different urban functional area of Lanzhou City[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 215−226.

    Google Scholar

    [19] Li J, Wu Z, Tian G, et al. Processes controlling the hydrochemical composition of geothermal fluids in the sandstone and dolostone reservoirs beneath the sedimentary basin in North China[J]. Applied Geochemistry, 2022, 138: 105211. doi: 10.1016/j.apgeochem.2022.105211

    CrossRef Google Scholar

    [20] 张福存, 文冬光, 郭建强, 等. 中国主要地方病区地质环境研究进展与展望[J]. 中国地质, 2010, 37(3): 551−562. doi: 10.3969/j.issn.1000-3657.2010.03.002

    CrossRef Google Scholar

    Zhang F C, Wen D G, Guo J Q, et al. Research progress and prospect of geological environment in main endemic disease area[J]. Geology in China, 2010, 37(3): 551−562. doi: 10.3969/j.issn.1000-3657.2010.03.002

    CrossRef Google Scholar

    [21] 赵锁志, 王喜宽, 黄增芳, 等. 内蒙古河套地区高氟水成因分析[J]. 岩矿测试, 2007, 26(4): 320−324. doi: 10.3969/j.issn.0254-5357.2007.04.015

    CrossRef Google Scholar

    Zhao S Z, Wang X K, Huang Z F, et al. Study on formation causes of high fluorine groundwater in Hetao area of Inner Mongolia[J]. Rock and Mineral Analysis, 2007, 26(4): 320−324. doi: 10.3969/j.issn.0254-5357.2007.04.015

    CrossRef Google Scholar

    [22] Qu S, Duan L, Shi Z, et al. Identifying the spatial pattern, driving factors and potential human health risks of nitrate and fluoride enriched groundwater of Ordos Basin, Northwest China[J]. Journal of Cleaner Production, 2022, 376: 134289. doi: 10.1016/j.jclepro.2022.134289

    CrossRef Google Scholar

    [23] Wang M Z, Su C L, Wang X G, et al. Spatial pattern, hydrogeochemical controlling processes and non-carcinogenic risks of fluoride-enriched groundwater in the North Henan Plain, Northern China[J]. Applied Geochemistry, 2024, 163: 105934. doi: 10.1016/j.apgeochem.2024.105934

    CrossRef Google Scholar

    [24] 何锦, 张福存, 韩双宝, 等. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 2010, 37(3): 621−626. doi: 10.3969/j.issn.1000-3657.2010.03.012

    CrossRef Google Scholar

    He J, Zhang F C, Han S B, et al. The distribution and genetic types of high-fluoride groundwater in Northern China[J]. Geology in China, 2010, 37(3): 621−626. doi: 10.3969/j.issn.1000-3657.2010.03.012

    CrossRef Google Scholar

    [25] Xiao Y, Hao Q C, Zhang Y, et al. Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain[J]. Science of the Total Environment, 2022, 802: 149909. doi: 10.1016/j.scitotenv.2021.149909

    CrossRef Google Scholar

    [26] 吴光伟, 李浩林, 王庆兵, 等. 鲁西北平原地下水高氟与高碘成因分析[J]. 岩矿测试, 2023, 42(4): 793−808. doi: 10.15898/j.ykcs.202207190134

    CrossRef Google Scholar

    Wu G W, Li H L, Wang Q B, et al. Mobilization mechanisms of high fluorine and iodine groundwater in the Northwest Shandong Plain[J]. Rock and Mineral Analysis, 2023, 42(4): 793−808. doi: 10.15898/j.ykcs.202207190134

    CrossRef Google Scholar

    [27] 王喜宽, 黄增芳, 赵锁志, 等. 河套地区盐碱化和砷氟中毒问题探讨[J]. 岩矿测试, 2007, 26(4): 328−330. doi: 10.3969/j.issn.0254-5357.2007.04.017

    CrossRef Google Scholar

    Wang X K, Huang Z F, Zhao S Z, et al. A preliminary study on soil salification and arseniasis-fluorosis in Hetao area[J]. Rock and Mineral Analysis, 2007, 26(4): 328−330. doi: 10.3969/j.issn.0254-5357.2007.04.017

    CrossRef Google Scholar

    [28] Su H, Kang W R, Li Y R, et al. Fluoride and nitrate contamination of groundwater in the loess plateau, China: Sources and related human health risks[J]. Environmental Pollution, 2021, 286: 117287. doi: 10.1016/j.envpol.2021.117287

    CrossRef Google Scholar

    [29] Wang Z, Guo H M, Xing S P, et al. Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater[J]. Journal of Hydrology, 2021, 598: 126372. doi: 10.1016/j.jhydrol.2021.126372

    CrossRef Google Scholar

    [30] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702−1703. doi: 10.1126/science.133.3465.1702

    CrossRef Google Scholar

    [31] 于津生, 虞福基, 刘德平. 中国东部大气降水氢、氧同位素组成[J]. 地球化学, 1987(1): 22−26. doi: 10.3321/j.issn:0379-1726.1987.01.003

    CrossRef Google Scholar

    Yu J S, Yu F J, Liu D P. The oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of China[J]. Geochimica, 1987(1): 22−26. doi: 10.3321/j.issn:0379-1726.1987.01.003

    CrossRef Google Scholar

    [32] Jia W H, Liu K, Yan J K, et al. Characteristics of geothermal waters in Eastern Wugongshan based on hydrogen, oxygen, and strontium isotopes[J]. Applied Geochemistry, 2023, 161: 105874. doi: 10.1016/j.apgeochem.2023.105874

    CrossRef Google Scholar

    [33] 余廷溪, 刘凯, 孙军亮, 等. 江西省安福地区地热水化学特征研究[J]. 地球学报, 2024, 45(1): 99−111. doi: 10.3975/cagsb.2022.121601

    CrossRef Google Scholar

    Yu T X, Liu K, Sun J L, et al. Hydrochemical character-istics of geothermal water in Anfu area, Jangxi Province[J]. Acta Geoscientica Sinica, 2024, 45(1): 99−111. doi: 10.3975/cagsb.2022.121601

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(239) PDF downloads(44) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint