Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 1
Article Contents

WANG Feicui, WANG Daming, LI Xusheng, ZHANG Bo, WEI Jialin, CAO Siqi, TONG Yunxiao. Spectral Identification Characteristics of Typical Rocks and Minerals in Alkali Feldspar Granite Type Nb-Ta Deposits in Central Inner Mongolia[J]. Rock and Mineral Analysis, 2025, 44(1): 102-114. doi: 10.15898/j.ykcs.202401090001
Citation: WANG Feicui, WANG Daming, LI Xusheng, ZHANG Bo, WEI Jialin, CAO Siqi, TONG Yunxiao. Spectral Identification Characteristics of Typical Rocks and Minerals in Alkali Feldspar Granite Type Nb-Ta Deposits in Central Inner Mongolia[J]. Rock and Mineral Analysis, 2025, 44(1): 102-114. doi: 10.15898/j.ykcs.202401090001

Spectral Identification Characteristics of Typical Rocks and Minerals in Alkali Feldspar Granite Type Nb-Ta Deposits in Central Inner Mongolia

More Information
  • Located in the central region of Inner Mongolia, within the southern segment of the Daxing’anling-North China Craton metallogenic belt, the area is notable for its widespread distribution of alkaline granite-type niobium-tantalum (Nb-Ta) deposits. Despite the region’s rich Nb-Ta resources, a comprehensive understanding of its spectroscopic characteristics remains inadequate, hindering precise and efficient mineral exploration. This study focuses on the Zhaojinggou large Nb-Ta deposit, employing portable short-wave infrared and thermal infrared spectrometers to analyze typical rock and mineral samples. The research reveals distinctive spectroscopic features of Nb-Ta enriched albite granite, amazonitization albite granite, amazonite pegmatite, biotite monzogranite, and wolframite-quartz vein. Comparative analysis, particularly against the standard sodium granite spectrum from the USGS spectral library, identifies a specific weak absorption feature at 2360nm, crucial for distinguishing amazonitization albite granite from other rocks and minerals, likely attributed to rock alteration and mineralization processes. In thermal infrared spectroscopy, quartz veins containing wolframite are distinguished by their high reflectance and “three-peak” features. Despite their similar spectral shapes, Nb-Ta enriched albite granite, amazonite pegmatite, and biotite monzogranite can be distinguished by the absorption depth and the ratio of absorption peak intensity around 2200nm. These findings provide a foundational dataset for future remote sensing surveys and evaluations of Nb-Ta mineral resources. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202401090001.

  • 加载中
  • [1] 尹兆波, 高利坤, 饶兵. 我国铌矿资源概况及选矿技术进展[J]. 矿产保护与利用, 2024, 44(1): 115−125. doi: 10.13779/j.cnki.issn1001-0076.2024.01.013

    CrossRef Google Scholar

    Yin Z B, Gao L K, Rao B. Overview of niobium resources and progress in mineral processing technology in China[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 115−125. doi: 10.13779/j.cnki.issn1001-0076.2024.01.013

    CrossRef Google Scholar

    [2] 曹飞, 杨卉芃, 张亮, 等. 全球钽铌矿产资源开发利用现状及趋势[J]. 矿产保护与利用, 2019, 39(5): 56−67, 89. doi: 10.13779/j.cnki.issn1001-0076.2018.06.041

    CrossRef Google Scholar

    Cao F, Yang H P, Zhang L, et al. Current situation and trend analysis of global tantalum and niobium mineral resources[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 56−67, 89. doi: 10.13779/j.cnki.issn1001-0076.2018.06.041

    CrossRef Google Scholar

    [3] Ma J, Guo X, Xue H, et al. Niobium/tantalum-based materials: Synthesis and applications in electrochemical energy storage[J]. Chemical Engineering Journal, 2020, 380: 122428. doi: 10.1016/j.cej.2019.122428

    CrossRef Google Scholar

    [4] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189−1209. doi: 10.19762/j.cnki.dizhixuebao.2019186

    CrossRef Google Scholar

    Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189−1209. doi: 10.19762/j.cnki.dizhixuebao.2019186

    CrossRef Google Scholar

    [5] 李建康, 李鹏, 王登红, 等. 中国铌钽矿成矿规律[J]. 科学通报, 2019, 64(15): 1545−1566. doi: 10.1360/N972018-00933

    CrossRef Google Scholar

    Li J K, Li P, Wang D H, et al. A review of niobium and tantalum metallogenic regularity in China[J]. Chinese Science Bulletin, 2019, 64(15): 1545−1566. doi: 10.1360/N972018-00933

    CrossRef Google Scholar

    [6] 徐清俊, 叶发旺, 张川, 等. 基于高光谱技术的钻孔岩心蚀变信息研究: 以新疆白杨河铀矿床为例[J]. 东华理工大学学报(自然科学版), 2016, 39(2): 184−190. doi: 10.3969/j.issn.1674-3504.2016.02.013

    CrossRef Google Scholar

    Xu Q J, Ye F W, Zhang C, et al. Alteration information of drill core in Baiyanghe uranium deposit, Xinjiang using hyperspectral technology[J]. Journal of East China Institute of Technology (Natural Science), 2016, 39(2): 184−190. doi: 10.3969/j.issn.1674-3504.2016.02.013

    CrossRef Google Scholar

    [7] Dehnavi S, Maghsoudi Y, Valadanzoej M. Using spectrum differentiation and combination for target detection of minerals[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 55: 9−20. doi: 10.1016/j.jag.2016.10.005

    CrossRef Google Scholar

    [8] 张弘, 高卿楠, 郭东旭. 花岗伟晶岩型锂矿热红外反射光谱特征及锂元素定量反演研究[J]. 矿物岩石, 2021, 41(1): 25−31. doi: 10.19719/j.cnki.1001-6872.2021.01.03

    CrossRef Google Scholar

    Zhang H, Gao Q N, Guo D X. Thermal infrared reflectance spectral characteristics of granitic pegmatite type lithium ore and quantitative inversion of lithium element[J]. Mineralogy and Petrology, 2021, 41(1): 25−31. doi: 10.19719/j.cnki.1001-6872.2021.01.03

    CrossRef Google Scholar

    [9] Cardoso-Fernandes J, Silva J, Perrotta M M, et al. Interpretation of the reflectance spectra of lithium (Li) minerals and pegmatites: A case study for mineralogical and lithological identification in the Fregeneda—Almendra area[J]. Remote Sensing, 2021, 13(18): 3688.

    Google Scholar

    [10] 成嘉伟, 刘新星, 张娟, 等. 河北邯邢地区白涧铁矿蚀变矿物红外光谱分析及找矿研究[J]. 地球科学, 2023, 48(4): 1551−1567. doi: 10.3799/dqkx.2022.303

    CrossRef Google Scholar

    Cheng J W, Liu X X, Zhang J, et al. Infrared spectral analysis and prospecting of alteration minerals of Baijian skarn-type iron deposit in Han—Xing area[J]. Earth Science, 2023, 48(4): 1551−1567. doi: 10.3799/dqkx.2022.303

    CrossRef Google Scholar

    [11] 吴泽群, 田淑芳. 利用热红外遥感提取层状硅酸盐蚀变矿物信息研究——以甘肃北山地区为例[J]. 西北地质, 2016, 49(1): 241−248. doi: 10.3969/j.issn.1009-6248.2016.01.025

    CrossRef Google Scholar

    Wu Z Q, Tian S F. Application of thermal infrared remote sensing in the extraction of altered phyllosilicate minerals: Example from Beishan area of Gansu Province[J]. Northwestern Geology, 2016, 49(1): 241−248. doi: 10.3969/j.issn.1009-6248.2016.01.025

    CrossRef Google Scholar

    [12] 田丰, 孙雨, 赵英俊, 等. 航空热红外高光谱在岩性识别中的应用——以甘肃柳园地区TASI数据为例[J]. 世界核地质科学, 2023, 40(3): 863−873. doi: 10.3969/j.issn.1672-0636.2023.03.017

    CrossRef Google Scholar

    Tian F, Sun Y, Zhao Y J, et al. Application of airborne thermal infrared hyperspectroscopy in lithology identification: A case study of TASI data in Liuyuan, Gansu[J]. World Nuclear Geoscience, 2023, 40(3): 863−873. doi: 10.3969/j.issn.1672-0636.2023.03.017

    CrossRef Google Scholar

    [13] 田丰. 全波段(0.35~25μm)高光谱遥感矿物识别和定量化反演技术研究[D]. 北京: 中国地质大学(北京), 2010.

    Google Scholar

    Tian F. Identification and quantitative retrival of minerals information integrating VIS-NIR-MIR-TIR (0.35-25μm) hyspectral data[D]. Beijing: China University of Geosciences (Beijing), 2010.

    Google Scholar

    [14] Wan Y, Fan Y, Jin M. Application of hyperspectral remote sensing for supplementary investigation of polymetallic deposits in Huaniushan ore region, Northwestern China[J]. Scientific Reports, 2021, 11(1): 440. doi: 10.1038/s41598-020-79864-0

    CrossRef Google Scholar

    [15] 郭东旭, 张弘, 高卿楠, 等. 钻孔岩心红外光谱-便携式XRF-磁化率测试在攀西太和钒钛磁铁矿床勘查中的应用[J]. 岩矿测试, 2022, 41(1): 43−53. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201005

    CrossRef Google Scholar

    Guo D X, Zhang H, Gao Q N, et al. Infrared spectroscopy, portable XRF and magnetic susceptibility analysis of drill core for exploration of the Taihe vanadium Titano—Magnetite deposit in the Panxi area, Sichuan Province[J]. Rock and Mineral Analysis, 2022, 41(1): 43−53. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201005

    CrossRef Google Scholar

    [16] Xie B, Mao W, Peng B, et al. Thermal-infrared spectral feature analysis and spectral identification of monzonite using feature-oriented principal component analysis[J]. Minerals, 2022, 12: 508. doi: 10.3390/min12050508

    CrossRef Google Scholar

    [17] 赵龙贤, 代晶晶, 林彬, 等. 西藏甲玛3000 m深钻蚀变矿物短波-热红外光谱特征[J]. 地质学报, 2023, 97(4): 1342−1359. doi: 10.3969/j.issn.0001-5717.2023.04.022

    CrossRef Google Scholar

    Zhao L X, Dai J J, Lin B, et al. Short- wave- thermal infrared spectra characteristics of altered minerals from the Jiama 3000m deep drill in Tibet[J]. Acta Geologica Sinica, 2023, 97(4): 1342−1359. doi: 10.3969/j.issn.0001-5717.2023.04.022

    CrossRef Google Scholar

    [18] 聂凤军, 王丰翔, 赵宇安, 等. 内蒙古赵井沟大型铌钽矿床地质特征及成因[J]. 矿床地质, 2013, 32(4): 730−743. doi: 10.3969/j.issn.0258-7106.2013.04.007

    CrossRef Google Scholar

    Nie F J, Wang F X, Zhao Y A, et al. Geological features and origin of Zhaojinggou Nb-Ta deposit in Wuchuan County, Inner Mongolia[J]. Mineral Deposits, 2013, 32(4): 730−743. doi: 10.3969/j.issn.0258-7106.2013.04.007

    CrossRef Google Scholar

    [19] 鄂阿强. 内蒙古中部典型花岗岩型稀有金属矿床特征和控矿因素[J]. 有色金属科学与工程, 2018, 9(2): 62−69. doi: 13264/j.cnki.ysjskx.2018.02.011

    CrossRef Google Scholar

    E A Q. Ore characteristics and ore controlling factors of rare metal deposits of typical granite type in the middle of the Inner Mongolia Autonomous Region[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 62−69. doi: 13264/j.cnki.ysjskx.2018.02.011

    CrossRef Google Scholar

    [20] 李志丹, 李效广, 崔玉荣, 等. 内蒙古赵井沟铌钽矿床燕山期成矿: 来自LA-MC-ICP-MS独居石、锆石U-Pb和黑云母40Ar-39Ar年龄的证据[J]. 地球科学, 2019, 44(1): 234−247. doi: 10.3799/dqkx.2018.100

    CrossRef Google Scholar

    Li Z D, Li X G, Cui Y R, et al. Yanshanian mineralization of Zhaojinggou Nb-Ta deposit, Inner Mongolia: Evidences from the monazite and zircon LA-MC-ICP-MS U-Pb and biotite 40Ar-39Ar Geochronology[J]. Earth Science, 2019, 44(1): 234−247. doi: 10.3799/dqkx.2018.100

    CrossRef Google Scholar

    [21] 高允, 孙艳, 赵芝, 等. 内蒙古武川县赵井沟铌钽多金属矿床白云母40Ar-39Ar同位素年龄及地质意义[J]. 岩矿测试, 2017, 36(5): 551−558. doi: 10.15898/j.cnki.11-2131/td.201612290190

    CrossRef Google Scholar

    Gao Y, Sun Y, Zhao Z, et al. 40Ar-39Ar Dating of muscovite from the Zhaojinggou Nb-Ta polymetallic deposit in Wuchuan County of Inner Mongolia and its geological implications[J]. Rock and Mineral Analysis, 2017, 36(5): 551−558. doi: 10.15898/j.cnki.11-2131/td.201612290190

    CrossRef Google Scholar

    [22] Clark R N, King T V V, Klejwa M, et al. High spectral resolution reflectance spectroscopy of minerals[J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B8): 12653−12680. doi: 10.1029/JB095iB08p12653

    CrossRef Google Scholar

    [23] Sitarz M, Handke M, Mozgawa W. Identification of silicooxygen rings in SiO2 based on IR spectra[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 56(9): 1819−1823. doi: 10.1016/S1386-1425(00)00241-9

    CrossRef Google Scholar

    [24] 回广骥, 高卿楠, 宋利强, 等. 新疆可可托海稀有金属矿床矿物和岩石热红外光谱特征[J]. 岩矿测试, 2021, 40(1): 134−144. doi: 0.15898/j.cnki.11-2131/td.202005060001

    CrossRef Google Scholar

    Hui G J, Gao Q N, Song L Q, et al. Thermal infrared spectra characteristics of rare metal minerals and rock in the Keketuohai deposit, Xijiang[J]. Rock and Mineral Analysis, 2021, 40(1): 134−144. doi: 0.15898/j.cnki.11-2131/td.202005060001

    CrossRef Google Scholar

    [25] 翟文羽, 陈磊, 徐艺轩, 等. 利用光谱吸收深度定量反演碳酸盐矿物的影响因素及应用分析[J]. 光谱学与光谱分析, 2021, 41(7): 2226−2232. doi: 10.3964/j.issn.1000-0593(2021)07-2226-07

    CrossRef Google Scholar

    Zhai W Y, Chen L, Xu Y X. et al. Analysis of impact factors and applications by using spectral absorption depth for quantitative inversion of carbonate mineral[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2226−2232. doi: 10.3964/j.issn.1000-0593(2021)07-2226-07

    CrossRef Google Scholar

    [26] Bai J, Li X, Hu X, et al. Classification methods of the hyperspectral image based on the continuum-removed[J]. Computer Engineering & Applications, 2003, 4897: 325−329. doi: 10.1117/12.466729

    CrossRef Google Scholar

    [27] Gomez C, Lagacherie P, Coulouma G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements[J]. Geoderma, 2008, 148(2): 141−148. doi: 10.1016/j.geoderma.2008.09.016

    CrossRef Google Scholar

    [28] 代晶晶, 赵龙贤, 姜琪, 等. 热红外高光谱技术在地质找矿中的应用综述[J]. 地质学报, 2020, 94(8): 2520−2533. doi: 10.3969/j.issn.0001-5717.2020.08.026

    CrossRef Google Scholar

    Dai J J, Zhao L X, Jiang Q, et al. Review of thermal-infrared spectroscopy applied in geological ore exploration[J]. Acta Geologica Sinica, 2020, 94(8): 2520−2533. doi: 10.3969/j.issn.0001-5717.2020.08.026

    CrossRef Google Scholar

    [29] 李志, 苏武峥, 李新国, 等. 基于高光谱特征参数优选的土壤盐分含量建模及其验证[J]. 新疆农业科学, 2021, 58(12): 2342. doi: 10.6048/j.issn.1001-4330.2021.12.022

    CrossRef Google Scholar

    Li Z, Su W Z, Li X G, et al. Modeling and verification of soil salt content based on hyperspectral characteristic parameter optimization[J]. Xinjiang Agricultural Sciences, 2021, 58(12): 2342. doi: 10.6048/j.issn.1001-4330.2021.12.022

    CrossRef Google Scholar

    [30] 王惠敏, 谭琨, 武复宇, 等. 基于光谱吸收特征的土壤重金属反演及吸附机理研究[J]. 光谱学与光谱分析, 2020, 40(1): 316−323. doi: 10.3964/j.issn.1000-0593(2020)01-0316-08

    CrossRef Google Scholar

    Wang H M, Tan K, Wu F Y, et al. Study of the retrieval and adsorption mechanism of soil heavy metals based on spectral absorption characteristics[J]. Spectroscopy and Spectral Analysis, 2020, 40(1): 316−323. doi: 10.3964/j.issn.1000-0593(2020)01-0316-08

    CrossRef Google Scholar

    [31] 邱佳炜, 刘新星, 薛哲, 等. 湖北金银山锑矿蚀变矿物红外光谱特征及找矿应用[J]. 岩石矿物学杂志, 2024, 43(3): 776−786. doi: 10.20086/j.cnki.yskw.2024.0321

    CrossRef Google Scholar

    Qiu J W, Liu X X, Xue Z, et al. Infrared spectroscopic characteristics and prospecting applications of altered minerals in the Jinyinshan antimony deposit in Hubei Province[J]. Acta Petrologica et Mineralogica, 2024, 43(3): 776−786. doi: 10.20086/j.cnki.yskw.2024.0321

    CrossRef Google Scholar

    [32] 王珊珊, 周可法, 白泳, 等. 新疆镜儿泉伟晶岩型锂矿岩矿光谱特征分析[J]. 地学前缘, 2023, 30(5): 205−215. doi: 10.13745/j.esf.sf.2023.5.19

    CrossRef Google Scholar

    Wang S S, Zhou K F, Bai Y, et al. Spectral reflectance study of the Jing’erquan pegmatite lithium deposit, Xinjiang[J]. Earth Science Frontiers, 2023, 30(5): 205−215. doi: 10.13745/j.esf.sf.2023.5.19

    CrossRef Google Scholar

    [33] 田丰, 冷成彪, 张兴春, 等. 短波红外光谱技术在矿床勘查中的应用[J]. 矿物岩石地球化学通报, 2019, 38(3): 634−642. doi: 10.19658/j.issn.1007-2802.2019.38.042

    CrossRef Google Scholar

    Tian F, Leng C B, Zhang X C, et al. Application of short wavelength infrared technique in exploration of mineral deposits: A review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(3): 634−642. doi: 10.19658/j.issn.1007-2802.2019.38.042

    CrossRef Google Scholar

    [34] 李雪, 王可勇, 孙国胜, 等. 内蒙古赵井沟钽铌矿床成矿作用探讨——来自天河石化、钠长石化花岗岩年代学、岩石地球化学的证据[J]. 岩石学报, 2021, 37(6): 1765−1784. doi: 10.18654/1000-0569/2021.06.08

    CrossRef Google Scholar

    Li X, Wang K Y, Sun G S, et al. Discussion on metallogenesis of Zhaojinggou Ta-Nb deposit in Inner Mongolia: Evidence from amazonitization and albitization granite geochronology and geochemistry[J]. Acta Petrologica Sinica, 2021, 37(6): 1765−1784. doi: 10.18654/1000-0569/2021.06.08

    CrossRef Google Scholar

    [35] LeGras M, Laukamp C, Lau I, et al. NVCL spectral reference library-phyllosilicates Part 2: Micas[R]. Canberra: Commonwealth Scientific and Industrial Research Organisation, 2018.

    Google Scholar

    [36] Mekonenn S A. Spectral analysis of lithium-bearing micas with shortwave and longwave infrared spectroscopy[D]. Holland: University of Twente, 2023.

    Google Scholar

    [37] Laukamp C, Rodger A, LeGras M, et al. Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra[J]. Minerals, 2021, 11(4): 347. doi: 10.3390/min11040347

    CrossRef Google Scholar

    [38] 申俊峰, 李胜荣, 杜柏松, 等. 金矿床的矿物蚀变与矿物标型及其找矿意义[J]. 矿物岩石地球化学通报, 2018, 37(2): 157−167. doi: 10.19658/j.issn.1007-2802.2018.37.018

    CrossRef Google Scholar

    Shen J F, Li S R, Du B S, et al. Minerals alteration and typomorph in gold deposit and their implications for prospecting[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(2): 157−167. doi: 10.19658/j.issn.1007-2802.2018.37.018

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(215) PDF downloads(34) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint