Citation: | ZHAN Nan, SUN Qing, LI Qi, XIE Manman, SHANG Wenyu, HAO Ruixia. Research Progress in Analytical Methods of Biomarker GDGTs in Geological Environments[J]. Rock and Mineral Analysis, 2024, 43(1): 30-46. doi: 10.15898/j.ykcs.202306100077 |
Glycerol dialkyl glyceryl tetraethers (GDGTs) are a class of environment biomarkers that are widely found in the environment of oceans, lakes, soils, and peat. GDGTs usually exist as intact polar lipids (IPL-GDGTs) in living cells, while they exist as core lipids stripped of polar head groups (CL-GDGTs) in geological environments. CL-GDGTs are structurally stable and sensitive to environmental changes and are considered to be a powerful tool for reconstructing palaeoclimate-palaeoenvironmental changes. GDGTs are structurally complex and diverse, coexisting with other compounds and present low contents, which brings challenges in analysis, especially in separation, purification, and quantification. This article summarizes the classification and structure of GDGTs, and presents a summary and comparison of methods for the separation and purification of IPL-GDGTs and CL-GDGTs in the environment. Multiple extraction methods can be used for CL-GDGTs, while the polar and thermally unstable IPL-GDGTs are preferably extracted using the Bligh-Dyer method. This article reviews the characteristics and limitations of various analysis methods, including liquid chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy, and gas chromatography-isotope ratio mass spectrometry. The BRIEF REPORT is available for this paper at
[1] | Castañeda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30: 2851−2891. doi: 10.1016/j.quascirev.2011.07.009 |
[2] | 尚文郁, 孙静轶, 谢曼曼, 等. 基于Py-GC/MS的沙漠湖泊直链脂肪族化合物分析及古气候应用初探[J]. 岩矿测试, 2022, 41(5): 836−848. Shang W Y, Sun J Y, Xie M M, et al. Py-GC/MS analysis method for aliphatic biomarker in desert lake sediment and its application in paleoclimatic study[J]. Rock and Mineral Analysis, 2022, 41(5): 836−848. |
[3] | Schouten S, Hopmans E C, Damsté J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J]. Organic Geochemistry, 2013, 54: 19−61. doi: 10.1016/j.orggeochem.2012.09.006 |
[4] | Dong L, Li Q Y, Li L, et al. Glacial–interglacial contrast in MBT/CBT proxies in the South China Sea: Implications for marine production of branched GDGTs and continental teleconnection[J]. Organic Geochemistry, 2015, 79: 74−82. doi: 10.1016/j.orggeochem.2014.12.008 |
[5] | Ge H M, Zhang C L. Advances in GDGT research in Chinese marginal seas: A review[J]. Science China: Earth Sciences, 2016, 59(6): 1173−1186. doi: 10.1007/s11430-015-5242-z |
[6] | de Jonge C, Stadnitskaia A, Cherkashov G, et al. Branched glycerol dialkyl glycerol tetraethers and crenarchaeol record post-glacial sea level rise and shift in source of terrigenous brGDGTs in the Kara Sea (Arctic Ocean)[J]. Organic Geochemistry, 2016, 92: 42−54. doi: 10.1016/j.orggeochem.2015.11.009 |
[7] | Cao J T, Rao Z G, Shi F X, et al. [J]. Ice formation on lake surfaces in winter causes warm-season bias of lacustrine brGDGT temperature estimates[J]. Biogeosciences, 2020, 17: 2521–2536. |
[8] | Wang H Y, Liu W G, He Y X, et al. Salinity-controlled isomerization of lacustrine brGDGTs impacts the associated MBT’5ME terrestrial temperature index[J]. Geochimica et Cosmochimica Acta, 2021, 305: 33−48. doi: 10.1016/j.gca.2021.05.004 |
[9] | Feng X P, Zhao C, D’Anderea W J, et al. Temperature fluctuations during the Common Era in subtropical Southwestern China inferred from brGDGTs in a remote alpine lake[J]. Earth and Planetary Science Letters, 2019, 510: 26−36. doi: 10.1016/j.jpgl.2018.12.028 |
[10] | 李婧婧, 杨欢, 郑峰峰, 等. 湖泊水体微生物四醚膜脂化合物研究进展[J]. 湖泊科学, 2021, 33(5): 1334−1349. doi: 10.18307/2021.0504 Li J J, Yang H, Zheng F F, et al. Occurrence and distribution of glycerol dialkyl glycerol tetraethers in lake water column: A review[J]. Journal of Lake Sciences, 2021, 33(5): 1334−1349. doi: 10.18307/2021.0504 |
[11] | Cheng Z Y, Yu F L, Ruan X Y, et al. GDGTs as indicators for organic-matter sources in a small subtropical river-estuary system[J]. Organic Geochemistry, 2021, 153: 104180. doi: 10.1016/j.orggeochem.2021.104180 |
[12] | Pitcher A, Schouten S, Damste J S S. In situ production of crenarchaeol in two California hot springs[J]. Applied and Environmental Microbiology, 2009, 75: 4443−4451. doi: 10.1128/AEM.02591-08 |
[13] | Wu W Y, Zhang C L, Wang H Y, et al. Impacts of temperature and pH on the distribution of archaeal lipids in Yunnan hot springs, China[J]. Frontiers in Microbiology, 2013, 4: 312. |
[14] | Ding S, Lange M, Lipp J, et al. Characteristics and origin of intact polar lipids in soil organic matter[J]. Soil Biology and Biochemistry, 2020, 151: 108045. doi: 10.1016/j.soilbio.2020.108045 |
[15] | de Jonge C, Radujkovic D, Sigurdsson B D, et al. Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils[J]. Organic Geochemistry, 2019, 137: 103897. doi: 10.1016/j.orggeochem.2019.07.006 |
[16] | Cao M, Rueda G, Rivas-Ruiz P, et al. Branched GDGT variability in sediments and soils from catchments with marked temperature seasonality[J]. Organic Geochemistry, 2018, 122: 98−114. doi: 10.1016/j.orggeochem.2018.05.007 |
[17] | Peaple M D, Beverly E J, Garza B, et al. Identifying the drivers of GDGT distributions in alkaline soil profiles within the Serengeti ecosystem[J]. Organic Geochemistry, 2022, 169: 104433. doi: 10.1016/j.orggeochem.2022.104433 |
[18] | Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J]. Environmental Microbiology, 2006, 8(4): 648−657. doi: 10.1111/j.1462-2920.2005.00941.x |
[19] | 樊嘉琛, 钱施, 裴宏业, 等. 微生物醚类化合物在泥炭古环境重建中的应用: 进展与问题[J]. 地球科学进展, 2021, 36(12): 1272−1290. doi: 10.11867/j.issn.1001-8166.2021.095 Fan J C, Qian S, Pei H Y, et al. Application of microbial ether lipids in the reconstruction of paleoenvironments in peatlands: Progress and problems[J]. Advances in Earth Science, 2021, 36(12): 1272−1290. doi: 10.11867/j.issn.1001-8166.2021.095 |
[20] | 李奇缘, 刘潇敏, 王章章, 等. 青藏高原东部现代泥炭GDGTs分布特征及环境意义[J]. 第四纪研究, 2016, 36(2): 388−395. Li Q Y, Liu X M, Wang Z Z, et al. Distributions and environmental significance of GDGTs in modern peat samples from Eastern Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(2): 388−395. |
[21] | Naafs B D A, Inglis G N, Zhang Y, et al. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids[J]. Geochimica et Cosmochimica Acta, 2017, 208: 285−301. doi: 10.1016/j.gca.2017.01.038 |
[22] | Huguet A, Meador T B, Laggoun-Défarge F, et al. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations[J]. Geochimica et Cosmochimica Acta, 2017, 203: 103−116. doi: 10.1016/j.gca.2017.01.012 |
[23] | 梁栋, 李丽, 贺娟, 等. 运用生物标志物重建古盐度的研究进展[J]. 地球化学, 2022, 51(3): 316−332. Liang D, Li L, He J, et al. Progress in paleosalinity reconstruction: A review of biomarker approaches[J]. Geochimica, 2022, 51(3): 316−332. |
[24] | Ernst R, Ejsing C S, Antonny B. Homeoviscous adaptation and the regulation of membrane lipids[J]. Journal of Molecular Biology, 2016, 428(24): 4776−4791. doi: 10.1016/j.jmb.2016.08.013 |
[25] | Summons R E, Welander P V, Gold D A. Lipid biomarkers: Molecular tools for illuminating the history of microbial life[J]. Nature Reviews Microbiology, 2022, 20: 174−185. doi: 10.1038/s41579-021-00636-2 |
[26] | Halamka T A, Raberg J H, McFarlin J M, et al. Production of diverse brGDGTs by acidobacterium Solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis[J]. Geobiology, 2022, 21: 102−118. |
[27] | Chen Y F, Zheng F F, Yang H, et al. The production of diverse brGDGTs by an acidobacterium providing a physiological basis for paleoclimate proxies[J]. Geochimica et Cosmochimica Acta, 2022, 337(15): 155−165. |
[28] | Naafs B D A, Oliveira A S F, Mulholland A J. Molecular dynamics simulations support the hypothesis that the brGDGT paleothermometer is based on homeoviscous adaptation[J]. Geochimica et Cosmochimica Acta, 2021, 312: 44−56. doi: 10.1016/j.gca.2021.07.034 |
[29] | Jenkyns H C, Schouten-Huibers L, Schouten S, et al. Warm middle Jurassic-early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean[J]. Climate of the Past, 2012, 8(1): 215−226. doi: 10.5194/cp-8-215-2012 |
[30] | Kielhofer J R, Tierney J E, Reuther J D, et al. BrGDGT temperature reconstruction from interior Alaska: Assessing 14, 000 years of deglacial to Holocene temperature variability and potential effects on early human settlement[J]. Quaternary Science Reviews, 2023, 303: 107979. doi: 10.1016/j.quascirev.2023.107979 |
[31] | Chu G Q, Sun Q, Zhu Q Z, et al. The role of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last deglaciation[J]. Quaternary Science Reviews, 2017, 177: 120−129. doi: 10.1016/j.quascirev.2017.10.014 |
[32] | Bai Y, Chen C H, Xu Q, et al. Paleoaltimetry potentiality of branched GDGTs from Southern Tibet[J]. Geochemistry, Geophysics, Geosystems, 2018, 19: 551−564. doi: 10.1002/2017GC007122 |
[33] | Liu X L, Summons R E, Hinrichs K U. Extending the known range of glycerol ether lipids in the environment: Structural assignments based on tandem mass spectral fragmentation patterns[J]. Rapid Communications in Mass Spectrometry, 2012, 26(19): 2295−2302. doi: 10.1002/rcm.6355 |
[34] | Li Y J, Su X, Jiao L, et al. Intact polar and core tetraether lipids in sediments from the haiyang 4 cold-seep of the Northern South China Sea and their implications[J]. Acta Geologica Sinica (English Edition), 2022, 96(2): 691−700. doi: 10.1111/1755-6724.14928 |
[35] | Kumar D M, Woltering M, Hpmans E C, et al. The vertical distribution of Thaumarchaeota in the water column of Lake Malawi inferred from core and intact polar tetraether lipids[J]. Organic Geochemistry, 2019, 132: 37−49. doi: 10.1016/j.orggeochem.2019.03.004 |
[36] | Villanueva L, Sinninghe Damsté J S, Schouten S. A re-evaluation of the archaeal membrane lipid biosynthetic pathway[J]. Nature Reviews Microbiology, 2014, 12(6): 438−448. doi: 10.1038/nrmicro3260 |
[37] | Zeng Z R, Liu X L, Farley K R, et al. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean[J]. Proceedings of the National Academy of Sciences, 2019, 116(45): 22505−22511. |
[38] | Yang W, Chen H H, Chen Y F, et al. Thermophilic archaeon orchestrates temporal expression of GDGT ring synthases in response to temperature and acidity stress[J]. Environmental Microbiology, 2023, 25(2): 575−587. doi: 10.1111/1462-2920.16301 |
[39] | De Jonge C, Hopmans E C, Stadnitskaia A, et al. Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC–SMB-MS[J]. Organic Geochemistry, 2013, 54: 78−82. doi: 10.1016/j.orggeochem.2012.10.004 |
[40] | Weber Y, De Jonge C, Rijpstra W I C, et al. Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: Evidence for lacustrine branched GDGT production[J]. Geochimica et Cosmochimica Acta, 2015, 154: 118−129. doi: 10.1016/j.gca.2015.01.032 |
[41] | Ding S, Schwab V F, Ueberschaar N, et al. Identification of novel 7-methyl and cyclopentenyl branched glycerol dialkyl glycerol tetraethers in lake sediments[J]. Organic Geochemistry, 2016, 102: 52−58. doi: 10.1016/j.orggeochem.2016.09.009 |
[42] | Liu X L, Russell D A, Bonfio C, et al. Glycerol configurations of environmental GDGTs investigated using a selective sn2 ether cleavage protocol[J]. Organic Geochemistry, 2019, 128: 57−62. doi: 10.1016/j.orggeochem.2018.12.003 |
[43] | Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. The enigmatic structure of the crenarchaeol isomer[J]. Organic Geochemistry, 2018, 124: 22−28. doi: 10.1016/j.orggeochem.2018.06.005 |
[44] | Sinninghe Damsté J S, Hopmans E C, Pancost R D, et al. Newly discovered non–isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments[J]. Chemical Communications, 2000, 17: 1683−1684. |
[45] | Bale N J, Palatinszky M, Rijpstra W I C, et al. Membrane lipid composition of the moderately thermophilic ammonia-oxidizing archaeon “Candidatus Nitrosotenuis uzonensis” at different growth temperatures[J]. Applied and Environmental Microbiology, 2019, 85(20): e01332−19. |
[46] | Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. Ether- and ester-bound iso-diabolic acid and other lipids in members of acidobacteria subdivision 4[J]. Applied and Environmental Microbiology, 2014, 80: 5207−5218. doi: 10.1128/AEM.01066-14 |
[47] | Halamka T A, McFarlin J M, Younkin A D, et al. Oxygen limitation can trigger the production of branched GDGTs in culture[J]. Geochemical Perspectives Letters, 2021, 19: 36−39. |
[48] | Liang J, Richter N, Xie H C, et al. Branched glycerol dialkyl glycerol tetraether (brGDGT) distributions influenced by bacterial community composition in various vegetation soils on the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 611: 111358. doi: 10.1016/j.palaeo.2022.111358 |
[49] | Buckles L K, Weijers J W H, Verschuren D, et al. Sources of core and intact branched tetraether membrane lipids in the lacustrine environment: Anatomy of Lake Challa and its catchment, equatorial East Africa[J]. Geochimica et Cosmochimica Acta, 2014, 140: 106−126. doi: 10.1016/j.gca.2014.04.042 |
[50] | 王欢业, 刘卫国, 张传伦. 超声波有机溶剂萃取法和改进的Bligh-Dyer 法提取甘油二烷基甘油四醚类化合物效果对比[J]. 地球环境学报, 2017, 8(2): 176−184. Wang H Y, Liu W G, Zhang C L. Comparison of the ultrasound-assisted organic solvent extraction and modified Bligh-Dyer extraction for the analysis of glycerol dialkyl glycerol tetraethers from environmental samples[J]. Journal of Earth Environment, 2017, 8(2): 176−184. |
[51] | Schouten S, Huguet C, Hopmans E C, et al. Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry[J]. Analytical Chemistry, 2007, 79(7): 2940−2944. doi: 10.1021/ac062339v |
[52] | Zheng Y H, Pancost R D, Naafs B D A, et al. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene[J]. Earth and Planetary Science Letters, 2018, 493: 36−46. doi: 10.1016/j.jpgl.2018.04.019 |
[53] | Hu J F, Zhou H D, Peng P A, et al. Seasonal variability in concentrations and fluxes of glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE China: Implications for the applicability of the MBT–CBT paleotemperature proxy in lacustrine settings[J]. Chemical Geology, 2016, 420: 200−212. doi: 10.1016/j.chemgeo.2015.11.008 |
[54] | Liao W S, Hu J F, Zhou H D, et al. Climatic and human impact on the environment: Insight from the tetraether lipid temperature reconstruction in the Beibu Gulf, China[J]. Quaternary International, 2020, 536: 75−84. doi: 10.1016/j.quaint.2019.12.004 |
[55] | 童晓宁. 松辽盆地及邻区晚白垩世四醚类脂物GDGTs揭示的古气候/环境意义[D]. 广州: 中国科学院广州地球化学研究所, 2018: 44-46. Tong X N. The paleoclimate and paleoenvironment reconstruction based on glycerol dialkyl glycerol tetraethers during late Cretaceous in the Songliao Basin and its vicinity[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2018: 44-46. |
[56] | Lengger S K, Sutton P A, Rowland S J, et al. Archaeal and bacterial glycerol dialkyl glycerol tetraether (GDGT) lipids in environmental samples by high temperature-gas chromatography with flame ionisation and time-of-flight mass spectrometry detection[J]. Organic Geochemistry, 2018, 121: 10−21. doi: 10.1016/j.orggeochem.2018.03.012 |
[57] | Li Q, Sun Q, Xie M M, et al. Coupled temperature variations in the Huguangyan Maar Lake between high and low latitude[J]. Quaternary Science Reviews, 2023, 305: 108011. doi: 10.1016/j.quascirev.2023.108011 |
[58] | Lu H X, Liu W G, Wang H Y, et al. Variation in 6-methyl branched glycerol dialkyl glycerol tetraethers in Lantian loess–paleosol sequence and effect on paleotemperature reconstruction[J]. Organic Geochemistry, 2016, 100: 10−17. doi: 10.1016/j.orggeochem.2016.07.006 |
[59] | Huguet C, Martens-Habbena M, Urakawa H, et al. Comparison of extraction methods for quantitative analysis of core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in environmental samples[J]. Limnology and Oceanography:Methods, 2010, 8: 127−145. doi: 10.4319/lom.2010.8.127 |
[60] | Escala M, Fietz S, Rueda G, et al. Analytical Considerations for the use of the paleothermometer tetraether index86 and the branched vs isoprenoid tetraether index regarding the choice of cleanup and instrumental conditions[J]. Analytical Chemistry, 2009, 81: 2701−2707. doi: 10.1021/ac8027678 |
[61] | Oba M, Sakata S, Tsunogai U. Polar and neutral isopranyl glycerol ether lipids as biomarkers of archaea in near-surface sediments from the Nankai Trough[J]. Organic Geochemistry, 2006, 37: 1643−1654. doi: 10.1016/j.orggeochem.2006.09.002 |
[62] | Auderset A, Schmitt M, Martínez-García A. Simultaneous extraction and chromatographic separation of n-alkanes and alkenones from glycerol dialkyl glycerol tetraethers via selective accelerated solvent extraction[J]. Organic Geochemistry, 2020, 143: 103979. doi: 10.1016/j.orggeochem.2020.103979 |
[63] | Lengger S K, Hopmans E C, Sinninghe Damsté J S, et al. Comparison of extraction and work up techniques for analysis of core and intact polar tetraether lipids from sedimentary environments[J]. Organic Geochemistry, 2012, 47: 34−40. doi: 10.1016/j.orggeochem.2012.02.009 |
[64] | Yang Y, Gao C, Dang X Y, et al. Assessing hydroxylated isoprenoid GDGTs as a paleothermometer for the tropical South China Sea[J]. Organic Geochemistry, 2018, 115: 156−165. doi: 10.1016/j.orggeochem.2017.10.014 |
[65] | Weijers J W H, Wiesenberg G L B, Hopmans E C, et al. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s)[J]. Biogeosciences, 2010, 7: 2959−2973. doi: 10.5194/bg-7-2959-2010 |
[66] | Zhu C, Lipp J S, Wörmer L, et al. Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocol[J]. Organic Geochemistry, 2013, 65: 53−62. doi: 10.1016/j.orggeochem.2013.09.012 |
[67] | Sanchi L, Ménot G, Bard E. An automated purification method for archaeal and bacterial tetraethers in soils and sediments[J]. Organic Geochemistry, 2013, 54: 83−90. doi: 10.1016/j.orggeochem.2012.10.005 |
[68] | Shah S R, Mollenhauer G, Ohkouchi N, et al. Origins of archaeal tetraether lipids in sediments: Insights from radiocarbon analysis[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4577−4594. doi: 10.1016/j.gca.2008.06.021 |
[69] | Schouten S, Hoefs M J L, Koopmans M P, et al. Structural characterization, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments. Organic Geochemistry, 1998, 29: 5-7, 1305-1319. |
[70] | Kaneko M, Kitajima F, Naraoka H. Stable hydrogen isotope measurement of archaeal ether-bound hydrocarbons[J]. Organic Geochemistry, 2011, 42: 166−172. doi: 10.1016/j.orggeochem.2010.11.002 |
[71] | Sinninghe Damsté J S, Schouten S, Ellen Hopmans et al. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota[J]. Journal of Lipid Research, 2002, 43(10): 1641−1651. doi: 10.1194/jlr.M200148-JLR200 |
[72] | Pancost R D, Coleman J M, Love C D, et al. Kerogen-bound glycerol dialkyl tetraether lipids released by hydropyrolysis of marine sediments: A bias against incorporation of sedimentary organisms?[J]. Organic Geochemistry, 2008, 39(9): 1359−1371. doi: 10.1016/j.orggeochem.2008.05.002 |
[73] | Hopmans E C, Schouten S, Sinninghe Damsté J S, et al. The effect of improved chromatography on GDGT-based palaeoproxies[J]. Organic Geochemistry, 2016, 93: 1−6. doi: 10.1016/j.orggeochem.2015.12.006 |
[74] | Yang H, Lü X X, Ding W H, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT’) in soils from an altitudinal transect at Mount Shennongjia[J]. Organic Geochemistry, 2015, 82: 42−53. doi: 10.1016/j.orggeochem.2015.02.003 |
[75] | Chen Y, Zhang C, Jia C, et al. Tracking the signals of living archaea: A multiple reaction monitoring (MRM) method for detection of trace amounts of intact polar lipids from the natural environment[J]. Organic Geochemistry, 2016, 97: 1−4. doi: 10.1016/j.orggeochem.2016.04.006 |
[76] | Davtian N, Bard E, Ménot G, et al. The importance of mass accuracy in selected ion monitoring analysis of branched and isoprenoid tetraethers[J]. Organic Geochemistry, 2018, 118: 58−62. doi: 10.1016/j.orggeochem.2018.01.007 |
[77] | 李运运, 何晨, 吴建勋, 等. 甘油四醚类化合物的高分辨质谱表征[J]. 质谱学报, 2021, 42(6): 1127−1138. Li Y Y, He C, Wu J X, et al. Molecular characterization of glycerol dialkyl glycerol tetraethers by high resolution orbitrap mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(6): 1127−1138. |
[78] | Horai S, Yamauchi N, Naraoka H. Simultaneous total analysis of core and polar membrane lipidsin archaea by high-performance liquid chromatography/high-resolution mass spectrometry coupled with heated electrospray ionization[J]. Rapid Communications in Mass Spectrometry, 2019, 33(20): 1571−1577. doi: 10.1002/rcm.8506 |
[79] | Radović J R, Silva R C, Snowdon R. Rapid screening of glycerol ether lipid biomarkers in recent marine sediment using atmospheric pressure photoionization in positive mode fourier transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2016, 88: 1128−1137. doi: 10.1021/acs.analchem.5b02571 |
[80] | Schouten S, Hopmans E C, van der Meer J, et al. An interlaboratory study of TEX86 and BIT analysis using high-performance liquid chromatography-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2009, 10: Q03012. |
[81] | Schouten S, Hopmans E C, Rosell M A, et al. An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures[J]. Geochemistry Geophysics Geosystems, 2013, 14(12): 5263−5285. doi: 10.1002/2013GC004904 |
[82] | Liu X L, Lipp J S, Simpson J H, et al. Mono- and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: Identification of both core and intact polar lipid forms[J]. Geochimica et Cosmochimica Acta, 2012, 89: 102−115. doi: 10.1016/j.gca.2012.04.053 |
[83] | Sutton P A, Rowland S J. High temperature gas chromatography-time-of-flight-mass spectrometry (HTGC-ToF-MS) for high-boiling compounds[J]. Journal of Chromatography A, 2012, 1243: 69−80. doi: 10.1016/j.chroma.2012.04.044 |
[84] | 张何, 黄桂兰, 袁铃, 等. 液相色谱-核磁共振联用技术研究进展[J]. 化学分析计量, 2017, 26(3): 117−122. Zhang H, Huang G L, Yuan L, et al. Advances of liquid chromatography coupled with nuclear magnetic resonance spectrometer[J]. Chemical Analysis and Meterage, 2017, 26(3): 117−122. |
[85] | 黄咸雨, 张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20−33. Huang X Y, Zhang Y M. An overview of the applications of lipid carbon isotope compositions in the paleoenvironmental and paleoecological reconstructions in lacustrine and peat deposits[J]. Advances in Earth Science, 2019, 34(1): 20−33. |
[86] | Lin Y S, Lipp J S, Yoshinaga M Y, et al. Intramolecular stable carbon isotopic analysis of archaeal glycosyl tetraether lipids[J]. Rapid Communications in Mass Spectrometry, 2010, 24: 2817−2826. doi: 10.1002/rcm.4707 |
[87] | Weber Y, Sinninghe Damsté J S, Zopfi J, et al. Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,43: 10926−10931. |
[88] | Colcord D E, Pearson A, Brassell S C. Carbon isotopic composition of intact branched GDGT core lipids in Greenland lake sediments and soils[J]. Organic Geochemistry, 2017, 110: 25−32. doi: 10.1016/j.orggeochem.2017.04.008 |
[89] | Pearson A, Hurley S J, Walter S R S, et al. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments[J]. Geochimica et Cosmochimica Acta, 2016, 181: 18−35. doi: 10.1016/j.gca.2016.02.034 |
[90] | Gies H, Hagedorn F, Lupker M, et al. Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass[J]. Biogeosciences, 2021, 18: 189−205. doi: 10.5194/bg-18-189-2021 |
[91] | Kusch S, Rethemeyer J, Hopmans E C, et al. Factors influencing 14C concentrations of algal and archaeal lipids and their associated sea surface temperature proxies in the Black Sea[J]. Geochimica et Cosmochimica Acta, 2016, 188: 35−57. doi: 10.1016/j.gca.2016.05.025 |
[92] | Lengger S K, Weber Y, Taylor K W R, et al. Determination of the δ2H values of high molecular weight lipids by high-temperature gas chromatography coupled to isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2021, 35: e8983. doi: 10.1002/rcm.8983 |
[93] | 张海龙, 陶舒琴, 于蒙, 等. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 79−89. Zhang H L, Tao S Q, Yu M, et al. A review on techniques and applications of biomarker compound-specific radiocarbon analysis[J]. Advances in Earth Science, 2017, 32(11): 79−89. |
[94] | Haghipour N, Ausin B, Usman M O, et al. Compound-specific radiocarbon analysis (CSRA) by elemental analyzer-accelerator mass spectrometry (EA-AMS): Precision and limitations[J]. Analytical Chemistry, 2019, 91,3: 2042−2049. |
Molecular structures of brGDGTs, isoGDGTs and IPL-GDGTs in the environment.
Total ion chromatogram (TIC) and extracted ion chromatogram (EIC) of GDGTs identified in lake sediment of Lake Shuanggoushan, Inner Mongolia. The chromatogram generated by HPLC-APCI-MS showing the elution order of brGDGTs and isoGDGTs with [M+H]+ ions.