Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 1
Article Contents

ZHAN Nan, SUN Qing, LI Qi, XIE Manman, SHANG Wenyu, HAO Ruixia. Research Progress in Analytical Methods of Biomarker GDGTs in Geological Environments[J]. Rock and Mineral Analysis, 2024, 43(1): 30-46. doi: 10.15898/j.ykcs.202306100077
Citation: ZHAN Nan, SUN Qing, LI Qi, XIE Manman, SHANG Wenyu, HAO Ruixia. Research Progress in Analytical Methods of Biomarker GDGTs in Geological Environments[J]. Rock and Mineral Analysis, 2024, 43(1): 30-46. doi: 10.15898/j.ykcs.202306100077

Research Progress in Analytical Methods of Biomarker GDGTs in Geological Environments

More Information
  • Glycerol dialkyl glyceryl tetraethers (GDGTs) are a class of environment biomarkers that are widely found in the environment of oceans, lakes, soils, and peat. GDGTs usually exist as intact polar lipids (IPL-GDGTs) in living cells, while they exist as core lipids stripped of polar head groups (CL-GDGTs) in geological environments. CL-GDGTs are structurally stable and sensitive to environmental changes and are considered to be a powerful tool for reconstructing palaeoclimate-palaeoenvironmental changes. GDGTs are structurally complex and diverse, coexisting with other compounds and present low contents, which brings challenges in analysis, especially in separation, purification, and quantification. This article summarizes the classification and structure of GDGTs, and presents a summary and comparison of methods for the separation and purification of IPL-GDGTs and CL-GDGTs in the environment. Multiple extraction methods can be used for CL-GDGTs, while the polar and thermally unstable IPL-GDGTs are preferably extracted using the Bligh-Dyer method. This article reviews the characteristics and limitations of various analysis methods, including liquid chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy, and gas chromatography-isotope ratio mass spectrometry. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202306100077.

  • 加载中
  • [1] Castañeda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30: 2851−2891. doi: 10.1016/j.quascirev.2011.07.009

    CrossRef Google Scholar

    [2] 尚文郁, 孙静轶, 谢曼曼, 等. 基于Py-GC/MS的沙漠湖泊直链脂肪族化合物分析及古气候应用初探[J]. 岩矿测试, 2022, 41(5): 836−848.

    Google Scholar

    Shang W Y, Sun J Y, Xie M M, et al. Py-GC/MS analysis method for aliphatic biomarker in desert lake sediment and its application in paleoclimatic study[J]. Rock and Mineral Analysis, 2022, 41(5): 836−848.

    Google Scholar

    [3] Schouten S, Hopmans E C, Damsté J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J]. Organic Geochemistry, 2013, 54: 19−61. doi: 10.1016/j.orggeochem.2012.09.006

    CrossRef Google Scholar

    [4] Dong L, Li Q Y, Li L, et al. Glacial–interglacial contrast in MBT/CBT proxies in the South China Sea: Implications for marine production of branched GDGTs and continental teleconnection[J]. Organic Geochemistry, 2015, 79: 74−82. doi: 10.1016/j.orggeochem.2014.12.008

    CrossRef Google Scholar

    [5] Ge H M, Zhang C L. Advances in GDGT research in Chinese marginal seas: A review[J]. Science China: Earth Sciences, 2016, 59(6): 1173−1186. doi: 10.1007/s11430-015-5242-z

    CrossRef Google Scholar

    [6] de Jonge C, Stadnitskaia A, Cherkashov G, et al. Branched glycerol dialkyl glycerol tetraethers and crenarchaeol record post-glacial sea level rise and shift in source of terrigenous brGDGTs in the Kara Sea (Arctic Ocean)[J]. Organic Geochemistry, 2016, 92: 42−54. doi: 10.1016/j.orggeochem.2015.11.009

    CrossRef Google Scholar

    [7] Cao J T, Rao Z G, Shi F X, et al. [J]. Ice formation on lake surfaces in winter causes warm-season bias of lacustrine brGDGT temperature estimates[J]. Biogeosciences, 2020, 17: 2521–2536.

    Google Scholar

    [8] Wang H Y, Liu W G, He Y X, et al. Salinity-controlled isomerization of lacustrine brGDGTs impacts the associated MBT’5ME terrestrial temperature index[J]. Geochimica et Cosmochimica Acta, 2021, 305: 33−48. doi: 10.1016/j.gca.2021.05.004

    CrossRef Google Scholar

    [9] Feng X P, Zhao C, D’Anderea W J, et al. Temperature fluctuations during the Common Era in subtropical Southwestern China inferred from brGDGTs in a remote alpine lake[J]. Earth and Planetary Science Letters, 2019, 510: 26−36. doi: 10.1016/j.jpgl.2018.12.028

    CrossRef Google Scholar

    [10] 李婧婧, 杨欢, 郑峰峰, 等. 湖泊水体微生物四醚膜脂化合物研究进展[J]. 湖泊科学, 2021, 33(5): 1334−1349. doi: 10.18307/2021.0504

    CrossRef Google Scholar

    Li J J, Yang H, Zheng F F, et al. Occurrence and distribution of glycerol dialkyl glycerol tetraethers in lake water column: A review[J]. Journal of Lake Sciences, 2021, 33(5): 1334−1349. doi: 10.18307/2021.0504

    CrossRef Google Scholar

    [11] Cheng Z Y, Yu F L, Ruan X Y, et al. GDGTs as indicators for organic-matter sources in a small subtropical river-estuary system[J]. Organic Geochemistry, 2021, 153: 104180. doi: 10.1016/j.orggeochem.2021.104180

    CrossRef Google Scholar

    [12] Pitcher A, Schouten S, Damste J S S. In situ production of crenarchaeol in two California hot springs[J]. Applied and Environmental Microbiology, 2009, 75: 4443−4451. doi: 10.1128/AEM.02591-08

    CrossRef Google Scholar

    [13] Wu W Y, Zhang C L, Wang H Y, et al. Impacts of temperature and pH on the distribution of archaeal lipids in Yunnan hot springs, China[J]. Frontiers in Microbiology, 2013, 4: 312.

    Google Scholar

    [14] Ding S, Lange M, Lipp J, et al. Characteristics and origin of intact polar lipids in soil organic matter[J]. Soil Biology and Biochemistry, 2020, 151: 108045. doi: 10.1016/j.soilbio.2020.108045

    CrossRef Google Scholar

    [15] de Jonge C, Radujkovic D, Sigurdsson B D, et al. Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils[J]. Organic Geochemistry, 2019, 137: 103897. doi: 10.1016/j.orggeochem.2019.07.006

    CrossRef Google Scholar

    [16] Cao M, Rueda G, Rivas-Ruiz P, et al. Branched GDGT variability in sediments and soils from catchments with marked temperature seasonality[J]. Organic Geochemistry, 2018, 122: 98−114. doi: 10.1016/j.orggeochem.2018.05.007

    CrossRef Google Scholar

    [17] Peaple M D, Beverly E J, Garza B, et al. Identifying the drivers of GDGT distributions in alkaline soil profiles within the Serengeti ecosystem[J]. Organic Geochemistry, 2022, 169: 104433. doi: 10.1016/j.orggeochem.2022.104433

    CrossRef Google Scholar

    [18] Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J]. Environmental Microbiology, 2006, 8(4): 648−657. doi: 10.1111/j.1462-2920.2005.00941.x

    CrossRef Google Scholar

    [19] 樊嘉琛, 钱施, 裴宏业, 等. 微生物醚类化合物在泥炭古环境重建中的应用: 进展与问题[J]. 地球科学进展, 2021, 36(12): 1272−1290. doi: 10.11867/j.issn.1001-8166.2021.095

    CrossRef Google Scholar

    Fan J C, Qian S, Pei H Y, et al. Application of microbial ether lipids in the reconstruction of paleoenvironments in peatlands: Progress and problems[J]. Advances in Earth Science, 2021, 36(12): 1272−1290. doi: 10.11867/j.issn.1001-8166.2021.095

    CrossRef Google Scholar

    [20] 李奇缘, 刘潇敏, 王章章, 等. 青藏高原东部现代泥炭GDGTs分布特征及环境意义[J]. 第四纪研究, 2016, 36(2): 388−395.

    Google Scholar

    Li Q Y, Liu X M, Wang Z Z, et al. Distributions and environmental significance of GDGTs in modern peat samples from Eastern Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(2): 388−395.

    Google Scholar

    [21] Naafs B D A, Inglis G N, Zhang Y, et al. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids[J]. Geochimica et Cosmochimica Acta, 2017, 208: 285−301. doi: 10.1016/j.gca.2017.01.038

    CrossRef Google Scholar

    [22] Huguet A, Meador T B, Laggoun-Défarge F, et al. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations[J]. Geochimica et Cosmochimica Acta, 2017, 203: 103−116. doi: 10.1016/j.gca.2017.01.012

    CrossRef Google Scholar

    [23] 梁栋, 李丽, 贺娟, 等. 运用生物标志物重建古盐度的研究进展[J]. 地球化学, 2022, 51(3): 316−332.

    Google Scholar

    Liang D, Li L, He J, et al. Progress in paleosalinity reconstruction: A review of biomarker approaches[J]. Geochimica, 2022, 51(3): 316−332.

    Google Scholar

    [24] Ernst R, Ejsing C S, Antonny B. Homeoviscous adaptation and the regulation of membrane lipids[J]. Journal of Molecular Biology, 2016, 428(24): 4776−4791. doi: 10.1016/j.jmb.2016.08.013

    CrossRef Google Scholar

    [25] Summons R E, Welander P V, Gold D A. Lipid biomarkers: Molecular tools for illuminating the history of microbial life[J]. Nature Reviews Microbiology, 2022, 20: 174−185. doi: 10.1038/s41579-021-00636-2

    CrossRef Google Scholar

    [26] Halamka T A, Raberg J H, McFarlin J M, et al. Production of diverse brGDGTs by acidobacterium Solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis[J]. Geobiology, 2022, 21: 102−118.

    Google Scholar

    [27] Chen Y F, Zheng F F, Yang H, et al. The production of diverse brGDGTs by an acidobacterium providing a physiological basis for paleoclimate proxies[J]. Geochimica et Cosmochimica Acta, 2022, 337(15): 155−165.

    Google Scholar

    [28] Naafs B D A, Oliveira A S F, Mulholland A J. Molecular dynamics simulations support the hypothesis that the brGDGT paleothermometer is based on homeoviscous adaptation[J]. Geochimica et Cosmochimica Acta, 2021, 312: 44−56. doi: 10.1016/j.gca.2021.07.034

    CrossRef Google Scholar

    [29] Jenkyns H C, Schouten-Huibers L, Schouten S, et al. Warm middle Jurassic-early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean[J]. Climate of the Past, 2012, 8(1): 215−226. doi: 10.5194/cp-8-215-2012

    CrossRef Google Scholar

    [30] Kielhofer J R, Tierney J E, Reuther J D, et al. BrGDGT temperature reconstruction from interior Alaska: Assessing 14, 000 years of deglacial to Holocene temperature variability and potential effects on early human settlement[J]. Quaternary Science Reviews, 2023, 303: 107979. doi: 10.1016/j.quascirev.2023.107979

    CrossRef Google Scholar

    [31] Chu G Q, Sun Q, Zhu Q Z, et al. The role of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last deglaciation[J]. Quaternary Science Reviews, 2017, 177: 120−129. doi: 10.1016/j.quascirev.2017.10.014

    CrossRef Google Scholar

    [32] Bai Y, Chen C H, Xu Q, et al. Paleoaltimetry potentiality of branched GDGTs from Southern Tibet[J]. Geochemistry, Geophysics, Geosystems, 2018, 19: 551−564. doi: 10.1002/2017GC007122

    CrossRef Google Scholar

    [33] Liu X L, Summons R E, Hinrichs K U. Extending the known range of glycerol ether lipids in the environment: Structural assignments based on tandem mass spectral fragmentation patterns[J]. Rapid Communications in Mass Spectrometry, 2012, 26(19): 2295−2302. doi: 10.1002/rcm.6355

    CrossRef Google Scholar

    [34] Li Y J, Su X, Jiao L, et al. Intact polar and core tetraether lipids in sediments from the haiyang 4 cold-seep of the Northern South China Sea and their implications[J]. Acta Geologica Sinica (English Edition), 2022, 96(2): 691−700. doi: 10.1111/1755-6724.14928

    CrossRef Google Scholar

    [35] Kumar D M, Woltering M, Hpmans E C, et al. The vertical distribution of Thaumarchaeota in the water column of Lake Malawi inferred from core and intact polar tetraether lipids[J]. Organic Geochemistry, 2019, 132: 37−49. doi: 10.1016/j.orggeochem.2019.03.004

    CrossRef Google Scholar

    [36] Villanueva L, Sinninghe Damsté J S, Schouten S. A re-evaluation of the archaeal membrane lipid biosynthetic pathway[J]. Nature Reviews Microbiology, 2014, 12(6): 438−448. doi: 10.1038/nrmicro3260

    CrossRef Google Scholar

    [37] Zeng Z R, Liu X L, Farley K R, et al. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean[J]. Proceedings of the National Academy of Sciences, 2019, 116(45): 22505−22511.

    Google Scholar

    [38] Yang W, Chen H H, Chen Y F, et al. Thermophilic archaeon orchestrates temporal expression of GDGT ring synthases in response to temperature and acidity stress[J]. Environmental Microbiology, 2023, 25(2): 575−587. doi: 10.1111/1462-2920.16301

    CrossRef Google Scholar

    [39] De Jonge C, Hopmans E C, Stadnitskaia A, et al. Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC–SMB-MS[J]. Organic Geochemistry, 2013, 54: 78−82. doi: 10.1016/j.orggeochem.2012.10.004

    CrossRef Google Scholar

    [40] Weber Y, De Jonge C, Rijpstra W I C, et al. Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: Evidence for lacustrine branched GDGT production[J]. Geochimica et Cosmochimica Acta, 2015, 154: 118−129. doi: 10.1016/j.gca.2015.01.032

    CrossRef Google Scholar

    [41] Ding S, Schwab V F, Ueberschaar N, et al. Identification of novel 7-methyl and cyclopentenyl branched glycerol dialkyl glycerol tetraethers in lake sediments[J]. Organic Geochemistry, 2016, 102: 52−58. doi: 10.1016/j.orggeochem.2016.09.009

    CrossRef Google Scholar

    [42] Liu X L, Russell D A, Bonfio C, et al. Glycerol configurations of environmental GDGTs investigated using a selective sn2 ether cleavage protocol[J]. Organic Geochemistry, 2019, 128: 57−62. doi: 10.1016/j.orggeochem.2018.12.003

    CrossRef Google Scholar

    [43] Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. The enigmatic structure of the crenarchaeol isomer[J]. Organic Geochemistry, 2018, 124: 22−28. doi: 10.1016/j.orggeochem.2018.06.005

    CrossRef Google Scholar

    [44] Sinninghe Damsté J S, Hopmans E C, Pancost R D, et al. Newly discovered non–isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments[J]. Chemical Communications, 2000, 17: 1683−1684.

    Google Scholar

    [45] Bale N J, Palatinszky M, Rijpstra W I C, et al. Membrane lipid composition of the moderately thermophilic ammonia-oxidizing archaeon “Candidatus Nitrosotenuis uzonensis” at different growth temperatures[J]. Applied and Environmental Microbiology, 2019, 85(20): e01332−19.

    Google Scholar

    [46] Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. Ether- and ester-bound iso-diabolic acid and other lipids in members of acidobacteria subdivision 4[J]. Applied and Environmental Microbiology, 2014, 80: 5207−5218. doi: 10.1128/AEM.01066-14

    CrossRef Google Scholar

    [47] Halamka T A, McFarlin J M, Younkin A D, et al. Oxygen limitation can trigger the production of branched GDGTs in culture[J]. Geochemical Perspectives Letters, 2021, 19: 36−39.

    Google Scholar

    [48] Liang J, Richter N, Xie H C, et al. Branched glycerol dialkyl glycerol tetraether (brGDGT) distributions influenced by bacterial community composition in various vegetation soils on the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 611: 111358. doi: 10.1016/j.palaeo.2022.111358

    CrossRef Google Scholar

    [49] Buckles L K, Weijers J W H, Verschuren D, et al. Sources of core and intact branched tetraether membrane lipids in the lacustrine environment: Anatomy of Lake Challa and its catchment, equatorial East Africa[J]. Geochimica et Cosmochimica Acta, 2014, 140: 106−126. doi: 10.1016/j.gca.2014.04.042

    CrossRef Google Scholar

    [50] 王欢业, 刘卫国, 张传伦. 超声波有机溶剂萃取法和改进的Bligh-Dyer 法提取甘油二烷基甘油四醚类化合物效果对比[J]. 地球环境学报, 2017, 8(2): 176−184.

    Google Scholar

    Wang H Y, Liu W G, Zhang C L. Comparison of the ultrasound-assisted organic solvent extraction and modified Bligh-Dyer extraction for the analysis of glycerol dialkyl glycerol tetraethers from environmental samples[J]. Journal of Earth Environment, 2017, 8(2): 176−184.

    Google Scholar

    [51] Schouten S, Huguet C, Hopmans E C, et al. Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry[J]. Analytical Chemistry, 2007, 79(7): 2940−2944. doi: 10.1021/ac062339v

    CrossRef Google Scholar

    [52] Zheng Y H, Pancost R D, Naafs B D A, et al. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene[J]. Earth and Planetary Science Letters, 2018, 493: 36−46. doi: 10.1016/j.jpgl.2018.04.019

    CrossRef Google Scholar

    [53] Hu J F, Zhou H D, Peng P A, et al. Seasonal variability in concentrations and fluxes of glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE China: Implications for the applicability of the MBT–CBT paleotemperature proxy in lacustrine settings[J]. Chemical Geology, 2016, 420: 200−212. doi: 10.1016/j.chemgeo.2015.11.008

    CrossRef Google Scholar

    [54] Liao W S, Hu J F, Zhou H D, et al. Climatic and human impact on the environment: Insight from the tetraether lipid temperature reconstruction in the Beibu Gulf, China[J]. Quaternary International, 2020, 536: 75−84. doi: 10.1016/j.quaint.2019.12.004

    CrossRef Google Scholar

    [55] 童晓宁. 松辽盆地及邻区晚白垩世四醚类脂物GDGTs揭示的古气候/环境意义[D]. 广州: 中国科学院广州地球化学研究所, 2018: 44-46.

    Google Scholar

    Tong X N. The paleoclimate and paleoenvironment reconstruction based on glycerol dialkyl glycerol tetraethers during late Cretaceous in the Songliao Basin and its vicinity[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2018: 44-46.

    Google Scholar

    [56] Lengger S K, Sutton P A, Rowland S J, et al. Archaeal and bacterial glycerol dialkyl glycerol tetraether (GDGT) lipids in environmental samples by high temperature-gas chromatography with flame ionisation and time-of-flight mass spectrometry detection[J]. Organic Geochemistry, 2018, 121: 10−21. doi: 10.1016/j.orggeochem.2018.03.012

    CrossRef Google Scholar

    [57] Li Q, Sun Q, Xie M M, et al. Coupled temperature variations in the Huguangyan Maar Lake between high and low latitude[J]. Quaternary Science Reviews, 2023, 305: 108011. doi: 10.1016/j.quascirev.2023.108011

    CrossRef Google Scholar

    [58] Lu H X, Liu W G, Wang H Y, et al. Variation in 6-methyl branched glycerol dialkyl glycerol tetraethers in Lantian loess–paleosol sequence and effect on paleotemperature reconstruction[J]. Organic Geochemistry, 2016, 100: 10−17. doi: 10.1016/j.orggeochem.2016.07.006

    CrossRef Google Scholar

    [59] Huguet C, Martens-Habbena M, Urakawa H, et al. Comparison of extraction methods for quantitative analysis of core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in environmental samples[J]. Limnology and Oceanography:Methods, 2010, 8: 127−145. doi: 10.4319/lom.2010.8.127

    CrossRef Google Scholar

    [60] Escala M, Fietz S, Rueda G, et al. Analytical Considerations for the use of the paleothermometer tetraether index86 and the branched vs isoprenoid tetraether index regarding the choice of cleanup and instrumental conditions[J]. Analytical Chemistry, 2009, 81: 2701−2707. doi: 10.1021/ac8027678

    CrossRef Google Scholar

    [61] Oba M, Sakata S, Tsunogai U. Polar and neutral isopranyl glycerol ether lipids as biomarkers of archaea in near-surface sediments from the Nankai Trough[J]. Organic Geochemistry, 2006, 37: 1643−1654. doi: 10.1016/j.orggeochem.2006.09.002

    CrossRef Google Scholar

    [62] Auderset A, Schmitt M, Martínez-García A. Simultaneous extraction and chromatographic separation of n-alkanes and alkenones from glycerol dialkyl glycerol tetraethers via selective accelerated solvent extraction[J]. Organic Geochemistry, 2020, 143: 103979. doi: 10.1016/j.orggeochem.2020.103979

    CrossRef Google Scholar

    [63] Lengger S K, Hopmans E C, Sinninghe Damsté J S, et al. Comparison of extraction and work up techniques for analysis of core and intact polar tetraether lipids from sedimentary environments[J]. Organic Geochemistry, 2012, 47: 34−40. doi: 10.1016/j.orggeochem.2012.02.009

    CrossRef Google Scholar

    [64] Yang Y, Gao C, Dang X Y, et al. Assessing hydroxylated isoprenoid GDGTs as a paleothermometer for the tropical South China Sea[J]. Organic Geochemistry, 2018, 115: 156−165. doi: 10.1016/j.orggeochem.2017.10.014

    CrossRef Google Scholar

    [65] Weijers J W H, Wiesenberg G L B, Hopmans E C, et al. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s)[J]. Biogeosciences, 2010, 7: 2959−2973. doi: 10.5194/bg-7-2959-2010

    CrossRef Google Scholar

    [66] Zhu C, Lipp J S, Wörmer L, et al. Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocol[J]. Organic Geochemistry, 2013, 65: 53−62. doi: 10.1016/j.orggeochem.2013.09.012

    CrossRef Google Scholar

    [67] Sanchi L, Ménot G, Bard E. An automated purification method for archaeal and bacterial tetraethers in soils and sediments[J]. Organic Geochemistry, 2013, 54: 83−90. doi: 10.1016/j.orggeochem.2012.10.005

    CrossRef Google Scholar

    [68] Shah S R, Mollenhauer G, Ohkouchi N, et al. Origins of archaeal tetraether lipids in sediments: Insights from radiocarbon analysis[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4577−4594. doi: 10.1016/j.gca.2008.06.021

    CrossRef Google Scholar

    [69] Schouten S, Hoefs M J L, Koopmans M P, et al. Structural characterization, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments. Organic Geochemistry, 1998, 29: 5-7, 1305-1319.

    Google Scholar

    [70] Kaneko M, Kitajima F, Naraoka H. Stable hydrogen isotope measurement of archaeal ether-bound hydrocarbons[J]. Organic Geochemistry, 2011, 42: 166−172. doi: 10.1016/j.orggeochem.2010.11.002

    CrossRef Google Scholar

    [71] Sinninghe Damsté J S, Schouten S, Ellen Hopmans et al. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota[J]. Journal of Lipid Research, 2002, 43(10): 1641−1651. doi: 10.1194/jlr.M200148-JLR200

    CrossRef Google Scholar

    [72] Pancost R D, Coleman J M, Love C D, et al. Kerogen-bound glycerol dialkyl tetraether lipids released by hydropyrolysis of marine sediments: A bias against incorporation of sedimentary organisms?[J]. Organic Geochemistry, 2008, 39(9): 1359−1371. doi: 10.1016/j.orggeochem.2008.05.002

    CrossRef Google Scholar

    [73] Hopmans E C, Schouten S, Sinninghe Damsté J S, et al. The effect of improved chromatography on GDGT-based palaeoproxies[J]. Organic Geochemistry, 2016, 93: 1−6. doi: 10.1016/j.orggeochem.2015.12.006

    CrossRef Google Scholar

    [74] Yang H, Lü X X, Ding W H, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT’) in soils from an altitudinal transect at Mount Shennongjia[J]. Organic Geochemistry, 2015, 82: 42−53. doi: 10.1016/j.orggeochem.2015.02.003

    CrossRef Google Scholar

    [75] Chen Y, Zhang C, Jia C, et al. Tracking the signals of living archaea: A multiple reaction monitoring (MRM) method for detection of trace amounts of intact polar lipids from the natural environment[J]. Organic Geochemistry, 2016, 97: 1−4. doi: 10.1016/j.orggeochem.2016.04.006

    CrossRef Google Scholar

    [76] Davtian N, Bard E, Ménot G, et al. The importance of mass accuracy in selected ion monitoring analysis of branched and isoprenoid tetraethers[J]. Organic Geochemistry, 2018, 118: 58−62. doi: 10.1016/j.orggeochem.2018.01.007

    CrossRef Google Scholar

    [77] 李运运, 何晨, 吴建勋, 等. 甘油四醚类化合物的高分辨质谱表征[J]. 质谱学报, 2021, 42(6): 1127−1138.

    Google Scholar

    Li Y Y, He C, Wu J X, et al. Molecular characterization of glycerol dialkyl glycerol tetraethers by high resolution orbitrap mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(6): 1127−1138.

    Google Scholar

    [78] Horai S, Yamauchi N, Naraoka H. Simultaneous total analysis of core and polar membrane lipidsin archaea by high-performance liquid chromatography/high-resolution mass spectrometry coupled with heated electrospray ionization[J]. Rapid Communications in Mass Spectrometry, 2019, 33(20): 1571−1577. doi: 10.1002/rcm.8506

    CrossRef Google Scholar

    [79] Radović J R, Silva R C, Snowdon R. Rapid screening of glycerol ether lipid biomarkers in recent marine sediment using atmospheric pressure photoionization in positive mode fourier transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2016, 88: 1128−1137. doi: 10.1021/acs.analchem.5b02571

    CrossRef Google Scholar

    [80] Schouten S, Hopmans E C, van der Meer J, et al. An interlaboratory study of TEX86 and BIT analysis using high-performance liquid chromatography-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2009, 10: Q03012.

    Google Scholar

    [81] Schouten S, Hopmans E C, Rosell M A, et al. An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures[J]. Geochemistry Geophysics Geosystems, 2013, 14(12): 5263−5285. doi: 10.1002/2013GC004904

    CrossRef Google Scholar

    [82] Liu X L, Lipp J S, Simpson J H, et al. Mono- and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: Identification of both core and intact polar lipid forms[J]. Geochimica et Cosmochimica Acta, 2012, 89: 102−115. doi: 10.1016/j.gca.2012.04.053

    CrossRef Google Scholar

    [83] Sutton P A, Rowland S J. High temperature gas chromatography-time-of-flight-mass spectrometry (HTGC-ToF-MS) for high-boiling compounds[J]. Journal of Chromatography A, 2012, 1243: 69−80. doi: 10.1016/j.chroma.2012.04.044

    CrossRef Google Scholar

    [84] 张何, 黄桂兰, 袁铃, 等. 液相色谱-核磁共振联用技术研究进展[J]. 化学分析计量, 2017, 26(3): 117−122.

    Google Scholar

    Zhang H, Huang G L, Yuan L, et al. Advances of liquid chromatography coupled with nuclear magnetic resonance spectrometer[J]. Chemical Analysis and Meterage, 2017, 26(3): 117−122.

    Google Scholar

    [85] 黄咸雨, 张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20−33.

    Google Scholar

    Huang X Y, Zhang Y M. An overview of the applications of lipid carbon isotope compositions in the paleoenvironmental and paleoecological reconstructions in lacustrine and peat deposits[J]. Advances in Earth Science, 2019, 34(1): 20−33.

    Google Scholar

    [86] Lin Y S, Lipp J S, Yoshinaga M Y, et al. Intramolecular stable carbon isotopic analysis of archaeal glycosyl tetraether lipids[J]. Rapid Communications in Mass Spectrometry, 2010, 24: 2817−2826. doi: 10.1002/rcm.4707

    CrossRef Google Scholar

    [87] Weber Y, Sinninghe Damsté J S, Zopfi J, et al. Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,43: 10926−10931.

    Google Scholar

    [88] Colcord D E, Pearson A, Brassell S C. Carbon isotopic composition of intact branched GDGT core lipids in Greenland lake sediments and soils[J]. Organic Geochemistry, 2017, 110: 25−32. doi: 10.1016/j.orggeochem.2017.04.008

    CrossRef Google Scholar

    [89] Pearson A, Hurley S J, Walter S R S, et al. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments[J]. Geochimica et Cosmochimica Acta, 2016, 181: 18−35. doi: 10.1016/j.gca.2016.02.034

    CrossRef Google Scholar

    [90] Gies H, Hagedorn F, Lupker M, et al. Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass[J]. Biogeosciences, 2021, 18: 189−205. doi: 10.5194/bg-18-189-2021

    CrossRef Google Scholar

    [91] Kusch S, Rethemeyer J, Hopmans E C, et al. Factors influencing 14C concentrations of algal and archaeal lipids and their associated sea surface temperature proxies in the Black Sea[J]. Geochimica et Cosmochimica Acta, 2016, 188: 35−57. doi: 10.1016/j.gca.2016.05.025

    CrossRef Google Scholar

    [92] Lengger S K, Weber Y, Taylor K W R, et al. Determination of the δ2H values of high molecular weight lipids by high-temperature gas chromatography coupled to isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2021, 35: e8983. doi: 10.1002/rcm.8983

    CrossRef Google Scholar

    [93] 张海龙, 陶舒琴, 于蒙, 等. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 79−89.

    Google Scholar

    Zhang H L, Tao S Q, Yu M, et al. A review on techniques and applications of biomarker compound-specific radiocarbon analysis[J]. Advances in Earth Science, 2017, 32(11): 79−89.

    Google Scholar

    [94] Haghipour N, Ausin B, Usman M O, et al. Compound-specific radiocarbon analysis (CSRA) by elemental analyzer-accelerator mass spectrometry (EA-AMS): Precision and limitations[J]. Analytical Chemistry, 2019, 91,3: 2042−2049.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(1)

Article Metrics

Article views(1734) PDF downloads(219) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint