Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 2
Article Contents

ZHOU Kan, ZHOU Jianchuan, WANG Xikuan, LIU Junfang, HUANG Lan, HOU Jinkai. Relationship between Available State and Forms of Selenium and Zinc in Farmland Soil of Luoyang City and Its Influencing Factors[J]. Rock and Mineral Analysis, 2024, 43(2): 315-329. doi: 10.15898/j.ykcs.202308210139
Citation: ZHOU Kan, ZHOU Jianchuan, WANG Xikuan, LIU Junfang, HUANG Lan, HOU Jinkai. Relationship between Available State and Forms of Selenium and Zinc in Farmland Soil of Luoyang City and Its Influencing Factors[J]. Rock and Mineral Analysis, 2024, 43(2): 315-329. doi: 10.15898/j.ykcs.202308210139

Relationship between Available State and Forms of Selenium and Zinc in Farmland Soil of Luoyang City and Its Influencing Factors

More Information
  • The form and available state of elements are important indexes to evaluate the activity of elements. Research on the relationship between the available state and form of selenium (Se) and zinc (Zn) in farmland soil is an important basis for accurate land quality evaluation. In this paper, the available states and different forms of Se and Zn in the soil of high Se background area in Luoyang farmland were studied. The results show that the available Se in wheat soil can be replaced by the sum of water-soluble state, ion state and carbonate state. The available Se in the soil of corn, millet, sesame, peanut and sweet potato can be replaced by the sum of water-soluble state and ion state. Available Zn can be represented by the sum of water-soluble, ionic and carbonate states. The active Zn in the farmland soil developed in the basalt area was low and similar to the water-soluble Zn. The available state and forms of Se and Zn in farmland soil were mainly affected by total amount, but also by cultivated crops, pH and organic matter. It is necessary to consider agricultural planting, pH and organic matter to evaluate the availability of Se and Zn by using the form instead of the available state in farmland soil. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202308210139.

  • 加载中
  • [1] 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319−336.

    Google Scholar

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319−336.

    Google Scholar

    [2] 梁红霞, 侯克斌, 陈富荣. 安徽池州地区富锌土壤资源分布特征及成因分析[J]. 安徽农业科学, 2022, 50(9): 59−64.

    Google Scholar

    Liang H X, Hou K B, Chen F R. Analysis on distribution characteristics and causes of zinc-rich soil resources in Chizhou of Anhui Province[J]. Journal of Anhui Agricultural Sciences, 2022, 50(9): 59−64.

    Google Scholar

    [3] 于炎炎. 安徽砀山县土壤锌地球化学特征及影响因素[J]. 矿产与地质, 2021, 35(6): 1147−1155.

    Google Scholar

    Yu Y Y. Geochemical characteristics and influence factor of soil types in Dangshan Country of Anhui Province[J]. Mineral Resources and Geology, 2021, 35(6): 1147−1155.

    Google Scholar

    [4] 齐尚星, 安邦, 张军, 等. 安徽省潜山市富锌土壤资源分布特征及成因分析[J]. 矿产勘查, 2023, 14(3): 502−509.

    Google Scholar

    Qi S X, An B, Zhang J, et al. Distribution characteristics and genesis analysis of zinc-rich soil resources in Qianshan City, Anhui Province[J]. Mineral Exploration, 2023, 14(3): 502−509.

    Google Scholar

    [5] 王昌宇, 张素荣, 刘继红, 等. 河北省饶阳县富锌、硒特色土地及其生态效应评价[J]. 地质调查与研究, 2019, 42(1): 49-56.

    Google Scholar

    Wang C Y, Zhang S R, Liu J H, et al. Evaluation of the characteristic land resources with Zn, Se and their ecological effects in Raoyang County of Hebei Province[J]. Geological Survey and Research, 2019, 42(1):49-56.

    Google Scholar

    [6] 刘久臣, 魏吉鑫, 张明, 等. 江西赣州市石城县天然富锌土地资源特征与开发利用[J]. 地质通报, 2021, 40(2/3): 442−450.

    Google Scholar

    Liu J C, Wei J X, Zhang M, et al. Characteristics and effective utilization of natural zinc-enriched land resources in Shicheng County of Ganzhou City, Jiangxi Province[J]. Geological Bulletin of China, 2021, 40(2/3): 442−450.

    Google Scholar

    [7] 韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005, 24(12): 1499−1502.

    Google Scholar

    Han C M, Wang L S, Gong Z Q, et al. Chemical forms of soil heavy metals and their environmental significance[J]. Chinese Journal of Ecology, 2005, 24(12): 1499−1502.

    Google Scholar

    [8] Tessie R A. Sequential extraction procedure for the speciation of particulate, trace metals[J]. Analytical Chemistry, 1979, 51(7): 844−851. doi: 10.1021/ac50043a017

    CrossRef Google Scholar

    [9] Raure T G, Lopez-Sanchez J F, Sahuquillo A, et al. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999(1): 57−61.

    Google Scholar

    [10] Ruby M V, Schoof R, Brattin W, et al. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J]. Environmental Science Technology, 1999, 33(21): 3697−3705. doi: 10.1021/es990479z

    CrossRef Google Scholar

    [11] 蔡奎, 栾文楼, 宋泽峰, 等. 廊坊地区土壤重金属存在形态及有效性分析[J]. 现代地质, 2011, 25(4): 813−818. doi: 10.3969/j.issn.1000-8527.2011.04.024

    CrossRef Google Scholar

    Cai K, Luan W L, Song Z F, et al. Soil heavy metal existence form in Langfang area and its validity analysis[J]. Geoscience, 2011, 25(4): 813−818. doi: 10.3969/j.issn.1000-8527.2011.04.024

    CrossRef Google Scholar

    [12] 张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学, 2020, 41(9): 4197−4209.

    Google Scholar

    Zhang F G, Peng M, Wang H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, Southwestern China[J]. Environmental Science, 2020, 41(9): 4197−4209.

    Google Scholar

    [13] 沈友, 吴永华, 李莉玲. 广东惠州南部农用土壤的重金属形态分析[J]. 惠州学院学报, 2015(3): 37−42.

    Google Scholar

    Shen Y, Wu Y H, Li L L. Speciation analysis of heavy metals in agricultural soils of South Huizhou City, Guangdong Province[J]. Journal of Huizhou University, 2015(3): 37−42.

    Google Scholar

    [14] 王振兴, 徐琪, 董伟强, 等. 城市生活污泥蚯蚓堆肥过程中重金属形态变化特征[J]. 环境工程, 2017, 35(11): 120−127, 23.

    Google Scholar

    Wang Z X, Xu Q, Dong W Q, et al. Effect of vermicomposting on speciations of heavy metals in municipal sludge[J]. Environmental Engineering, 2017, 35(11): 120−127, 23.

    Google Scholar

    [15] 王锐, 余京, 李瑜, 等. 地块尺度重金属污染风险耕地安全利用区划方法[J]. 环境科学, 2022, 43(8): 4190−4198.

    Google Scholar

    Wang R, Yu J, Li Y, et al. Zoning and safe utilization method of heavy metal contaminated cultivated land at block scale[J]. Environmental Science, 2022, 43(8): 4190−4198.

    Google Scholar

    [16] 刘劲松, 胡俊良, 张鲲, 等. 柿竹园矿区及周边农田土镶重金属形态分布与生物有效性研究[J]. 金属矿山, 2018(11): 155−160.

    Google Scholar

    Liu J S, Hu J L, Zhang K, et al. Study on speciation and bioavailability of heavy metals of agricultural soils in Shizhuyuan mining and its adjacent area[J]. Metal Mine, 2018(11): 155−160.

    Google Scholar

    [17] 梁若玉, 和娇, 史雅娟, 等. 典型富硒农业基地土壤硒的生物有效性与剖面分布分析[J]. 环境化学, 2017, 36(7): 1588−1595.

    Google Scholar

    Liang R Y, He J, Shi Y J, et al. Bioavailability and profile distribution of selenium in soils of typical Se-enriched agricultural base[J]. Environmental Chemistry, 2017, 36(7): 1588−1595.

    Google Scholar

    [18] 王国莉, 陈孟君, 范红英, 等. 四种土壤重金属形态分析方法的对比研究[J]. 浙江农业学报, 2015, 27(11): 1977−1983.

    Google Scholar

    Wang G L, Chen M J, Fan H Y, et al. Comparison of four speciation analytical methods for soil heavy metals[J]. Acta Agriculturae Zhejiangensis, 2015, 27(11): 1977−1983.

    Google Scholar

    [19] 贾双琳, 李长安. 土壤中重金属有效态分析技术研究进展[J]. 贵州地质, 2021, 38(1): 79−84.

    Google Scholar

    Jia S L, Li C A. Advances of researches on analytical techniques for available state heavy metals in soil[J]. Guizhou Geology, 2021, 38(1): 79−84.

    Google Scholar

    [20] 李乾玉, 姚晓慧, 刘丽萍, 等. 高效液相色谱-电感耦合等离子体质谱法分析研究西兰花中硒形态[J]. 岩矿测试, 2023, 42(3): 523−535.

    Google Scholar

    Li Q Y, Yao X H, Liu L P, et al. Selenium speciation in broccoli by high performance liquid chromatogramphy-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2023, 42(3): 523−535.

    Google Scholar

    [21] 侯进凯, 宋延斌, 莘丰培, 等. 洛阳市硒资源详查报告[R]. 河南省地质矿产勘查开发局第一地质矿产调查院, 2020.

    Google Scholar

    Hou J K, Song Y B, Xin F P, et al. Detailed investigation report of selenium resources in Luoyang [R]. The First Institute of Geology and Mineral Resources Survey, Henan Provincial Bureau of Geology and Mineral Resources Exploration and Development, 2020.

    Google Scholar

    [22] 王仁琪, 张志敏, 晁旭, 等. 陕西省安康市西部稻田土壤硒形态特征与水稻富硒状况研究[J]. 中国地质, 2022, 49(2): 398-408.

    Google Scholar

    Wang R Q, Zhang Z M, Chao X, et al. A study of the selenium speciation in paddy soil and status of selenium-enriched rice in western part of Ankang City, Shannxi Province[J]. Geology in China, 2022, 49(2): 398-408.

    Google Scholar

    [23] 程涌, 陈云峰, 岳永强, 等. 湖北省利川市表层土壤中硒元素形态的受控因素研究[J]. 昆明冶金高等专科学校学报, 2020, 36(1): 16−21.

    Google Scholar

    Cheng Y, Chen Y F, Yue Y Q, et al. Study on controlled factors of selenium speciation in surface soil of Lichuan City in Hubei Province[J]. Journal of Kunming Metallurgy College, 2020, 36(1): 16−21.

    Google Scholar

    [24] 邢颖, 刘永贤, 梁潘霞, 等. 土壤硒形态及其相互转化因子的研究[J]. 中国农学通报, 2018, 34(17): 83−88. doi: 10.11924/j.issn.1000-6850.casb17060087

    CrossRef Google Scholar

    Xing Y, Liu Y X, Liang P X, et al. Morphology and interconversion factor of selenium in soil[J]. Chinese Agricultural Science Bulletin, 2018, 34(17): 83−88. doi: 10.11924/j.issn.1000-6850.casb17060087

    CrossRef Google Scholar

    [25] 张先伟, 李晶晶, 李峻, 等. 雷州半岛玄武岩残积土的物质成分与结构特征[J]. 工程地质学报, 2014, 22(5): 797−803.

    Google Scholar

    Zhang X W, Li J J, Li J, et al. Structure and composition of residual soil from decomposed basalt at Leizhou Peninsula[J]. Journal of Engineering Geology, 2014, 22(5): 797−803.

    Google Scholar

    [26] 贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 2021, 40(3): 384−396.

    Google Scholar

    He L, Wu C, Zeng D M, et al. Distribution of heavy metals and ecological risk of soils in the typical geological background region of Southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 384−396.

    Google Scholar

    [27] 彭敏 . 西南典型地质高背景区土壤-作物系统重金属迁移富集特征与控制因素[D]. 北京: 中国地质大学 (北京), 2020: 1-113.

    Google Scholar

    Peng M. Heavy metals in soil-crop system from typical high geological background areas, Southwest China: Transfer characteristics and controlling factors[D]. Beijing: China University of Geosciences (Beijing), 2020: 1-113.

    Google Scholar

    [28] 宋延斌, 王喜宽, 夏炎, 等. 河南洛阳市土壤和农作物中硒分布及富集特征[J]. 岩矿测试, 2022, 41(4): 652−662.

    Google Scholar

    Song Y B, Wang X K, Xia Y, et al. Distribution and enrichment characteristics of selenium in soil and crops in Luoyang City, Henan Province[J]. Rock and Mineral Analysis, 2022, 41(4): 652−662.

    Google Scholar

    [29] 吉清妹, 潘孝忠, 张冬明, 等. 海南农田土壤有效硒含量与分级及其影响因素[ J]. 广东农业科学, 2016, 43(3): 88-92.

    Google Scholar

    Ji Q M, Pan X Z, Zhang D M, et al. Content distribution classification of available selenium in Hainan farm lands and its influence factors[J]. Guangdong Agricultural Sciences, 2016, 43(3): 88-92.

    Google Scholar

    [30] 黄彬, 项剑桥, 杨军. 江汉平原土壤-水稻硒元素迁移和受控因素分析[J]. 资源环境与工程, 2019, 33(增刊): 27−35.

    Google Scholar

    Huang B, Xiang J Q, Yang J, et al. Analysis of selenium migration and controlled factors in soil-rice in Jianghan Plain[J]. Resources Environment & Engineering, 2019, 33(Supplement): 27−35.

    Google Scholar

    [31] 姜冰, 王松涛, 孙增兵, 等. 鲁中碳酸盐岩区土壤硒来源、有效性及影响因素[J]. 土壤, 2022, 54(4): 841−846.

    Google Scholar

    Jiang B, Wang S T, Sun Z B, et al. Sources, availability and influencing factors of soil selenium in carbonate rock area of Central Shandong[J]. Soils, 2022, 54(4): 841−846.

    Google Scholar

    [32] 王志强, 杨建锋, 魏丽馨, 等. 石嘴山地区碱性土壤硒地球化学特征及生物有效性研究[J]. 物探与化探, 2022, 46(1): 229−237.

    Google Scholar

    Wang Z Q, Yang J F, Wei L X, et al. Geochemical characteristics and bioavailability of selenium in alkaline soil in Shizuishan area, Ningxia[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 229−237.

    Google Scholar

    [33] 张含, 龚敏, 石汝杰. 重庆市蔬菜地土壤硒含量及其影响因素分析[J]. 中国农学通报, 2022, 38(19): 114−119.

    Google Scholar

    Zhang H, Gong M, Shi R J. et al. Selenium content of vegetable soil in Chongqing and its influencing factors[J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 114−119.

    Google Scholar

    [34] 杨奎, 李湘凌, 张敬雅, 等. 安徽庐江潜在富硒土壤硒生物有效性及其影响因素[J]. 环境科学研究, 2018, 31(4): 715−724.

    Google Scholar

    Yang K, Li X L, Zhang J Y, et al. Selenium bioavailability and the influential factors in potentially selenium enriched soils in Lujiang County, Anhui Province[J]. Research of Environmental Sciences, 2018, 31(4): 715−724.

    Google Scholar

    [35] 刘冰权, 沙珉, 谢长瑜, 等. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素[J]. 岩矿测试, 2021, 40(5): 740−750.

    Google Scholar

    Liu B Q, Sha M, Xie C Y, et al. Geochemical characteristics of soil selenium and influencing factors of selenium bioavailability in rice root soils in Qingxi area, Ganxian County, Jiangxi Province[J]. Rock and Mineral Analysis, 2021, 40(5): 740−750.

    Google Scholar

    [36] 马迅, 宗良纲, 诸旭东, 等. 江西丰城生态硒谷土壤有效性及其影响因素[J]. 安全与环境学报, 2017, 17(4): 1588−1593.

    Google Scholar

    Ma X, Zong L G, Zhu X D, et al. Effectiveness and influential factors of soil selenium in selenium valley, Fengcheng, Jiangxi[J]. Journal of Safety and Environment, 2017, 17(4): 1588−1593.

    Google Scholar

    [37] 吴长龙, 周晨霓, 王彤. 土壤硒有效性影响因素研究进展[J]. 山东林业科技, 2022(1): 96−104.

    Google Scholar

    Wu C L, Zhou C N, Wang T. Progress on the influencing factors of soil selenium effectiveness[J]. Shangdong Forestry Science and Technology, 2022(1): 96−104.

    Google Scholar

    [38] 王雪. 安徽省砀山县黄桃根系土pH、有机质及有效态元素相关性分析[J]. 四川地质学报, 2022, 42(2): 270−274.

    Google Scholar

    Wang X. Correlation analysis of pH, organic matter and effective state elements of yellow peach root system soil in Dangshan, Anhui[J]. Acta Geologica Sichuan, 2022, 42(2): 270−274.

    Google Scholar

    [39] 潘学萍, 耿顺军, 赵芳, 等. 昭鲁坝区植烟土壤有效锌含量及其影响因素分析[J]. 山东农业科学, 2017, 49(12): 82−85.

    Google Scholar

    Pan X P, Geng S J, Zhao F, et al. Available zinc content in tobacco-growing soil from Zhaoyang and Ludian area and its influencing factors[J]. Shandong Agricultural Sciences, 2017, 49(12): 82−85

    Google Scholar

    [40] 鲍大忠, 游桂芝, 袁盛博. 贵州安龙县耕地土壤几种有效态与对应全量、pH 值、有机质的相关分析[J]. 贵州地质, 2020, 37(4): 546−550.

    Google Scholar

    Bao D Z, You G Z, Yuan S B. Correlation analysis on soil several effective states and corresponding total amount, pH value and organic matter in cultivated soil in Anlong County, Guizhou Province[J]. Guizhou Geology, 2020, 37(4): 546−550.

    Google Scholar

    [41] 戈启军, 玛依拉·玉素音, 柴仲平, 等. 库尔勒香梨园土壤锌的分布特征及其有效性与土壤 pH的关系分析[J]. 新疆农业大学学报, 2020, 43(5): 361−367.

    Google Scholar

    Ge Q J, Mayila Y, Chai Z P, et al. Analysis of relationship between distribution and availability of soil Zn and pH in Korla fragrant pear orchard[J]. Journal of Xinjiang Agricultural University, 2020, 43(5): 361−367.

    Google Scholar

    [42] 夏凡, 王永东, 郑子成, 等. 小尺度下茶园土壤有效态微量元素空间变异特征及其影响因素分析[J]. 植物营养与肥料学报, 2022, 28(6): 1047−1054.

    Google Scholar

    Xia F, Wang Y D, Zheng Z C, et al. Spatial variability of soil microelements in a small scale tea garden and the influencing factors[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 1047−1054.

    Google Scholar

    [43] 王学寅, 黄益灵, 全斌斌, 等. 浙江省瑞安市耕作层土壤养分元素有效态含量空间变异特征及其影响因素[J]. 现代地质, 2022, 36(3): 963−970.

    Google Scholar

    Wang X Y, Huang Y L, Quan B B, et al. Spatial variability characteristics and influencing factors of available contents of nutritive elements in tillage layer soil of Ruian, Zhejiang Province[J]. Geoscience, 2022, 36(3): 963−970.

    Google Scholar

    [44] 王子腾, 耿元波, 梁涛. 中国农田土壤的有效锌含量及影响因素分析[J]. 中国土壤与肥料, 2019(6): 55−63.

    Google Scholar

    Wang Z T, Geng Y B, Liang T. Temporal and spatial difference and influencing factors analysis of soil available Zn of farmland in China[J]. Soil and Fertilizer Sciences, 2019(6): 55−63.

    Google Scholar

    [45] 张世昌. 福建主要耕作土壤有效锌含量分布及影响因素分析[J]. 中国土壤与肥料, 2022(9): 148−154.

    Google Scholar

    Zhang S C. Distribution and influencing factors of avail-able zinc in main cultivated soils in Fujian Province[J]. Soil and Fertilizer Sciences, 2022(9): 148−154.

    Google Scholar

    [46] 张黎明, 郑福维, 米红波, 等. 龙山县植烟土壤有效锌空间分布及其影响因素分析[J]. 云南农业大学学报(自然科学), 2018, 3(1): 140−146.

    Google Scholar

    Zhang L M, Zheng F W, Mi H B, et al. Distribution of available zinc in Longshan tobacco growing soil and its influencing factors[J]. Journal of Yunnan Agricultural University (Natural Science), 2018, 3(1): 140−146.

    Google Scholar

    [47] 李欢, 黄勇, 闫广新, 等. 北京市农用地土壤微量元素有效态含量特征及其影响因素分析[J]. 城市地质, 2022, 17(2): 142−148.

    Google Scholar

    Li H, Huang Y, Yan G X, et al. Content characteristics and influencing factors of available trace elements in agricultural soil in Beijing[J]. Urban Geology, 2022, 17(2): 142−148.

    Google Scholar

    [48] 王峰, 陈玉真, 单睿阳, 等. 大田县茶园土壤和茶叶中锌含量及影响因素分析[J]. 茶叶学报, 2017, 58(4): 179−183.

    Google Scholar

    Wang F, Chen Y Z, Shan R Y, et al. Factors affecting zinc contents in tea leaves and plantation soil at Datian Country[J]. Acta Tea Sinica, 2017, 58(4): 179−183.

    Google Scholar

    [49] 谢团辉, 郭京霞, 陈炎辉, 等. 福建省某矿区周边土壤-农作物重金属空间变异特征与健康风险评价[J]. 农业环境科学学报, 2019, 38(3): 544−554.

    Google Scholar

    Xie T H, Guo J X, Chen Y H, et al. Spatial variability and health risk assessment of heavy metals in soils and crops around the mining area in Fujian Province, China[J]. Journal of Agro-Environment Science, 2019, 38(3): 544−554.

    Google Scholar

    [50] 姜冰, 张海瑞, 刘阳, 等. 高密市耕地表层土壤营养元素有效态地球化学特征[J]. 山东国土资源, 2021, 37(4): 32−40.

    Google Scholar

    Jiang B, Zhang H R, Liu Y, et al. Geochemical characteristics of nutrient elements in surface soil of cultivated land in Gaomi City[J]. Shandong Land and Resources, 2021, 37(4): 32−40.

    Google Scholar

    [51] 夏文建, 张丽芳, 刘增兵, 等. 长期施用化肥和有机肥对稻田土壤重金属及其有效性的影响[J]. 环境科学, 2021, 42(5): 2469−2479.

    Google Scholar

    Xia W J, Zhang L F, Liu Z B, et al. Effects of long-term application of chemical fertilizers and organic fertilizers on heavy metals and their availability in reddish paddy soil[J]. Environmental Science, 2021, 42(5): 2469−2479.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(7)

Article Metrics

Article views(870) PDF downloads(125) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint