Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 5
Article Contents

ZHANG Chenxi, NI Qian, LUO Tao, ZHANG Wen, HU Zhaochu. Laser-based Green and Efficient Sample Preparation Procurement for Geological Samples with Complex Matrices[J]. Rock and Mineral Analysis, 2023, 42(5): 1007-1019. doi: 10.15898/j.ykcs.202308140137
Citation: ZHANG Chenxi, NI Qian, LUO Tao, ZHANG Wen, HU Zhaochu. Laser-based Green and Efficient Sample Preparation Procurement for Geological Samples with Complex Matrices[J]. Rock and Mineral Analysis, 2023, 42(5): 1007-1019. doi: 10.15898/j.ykcs.202308140137

Laser-based Green and Efficient Sample Preparation Procurement for Geological Samples with Complex Matrices

More Information
  • BACKGROUND

    Knowledge of the chemical composition of whole-rock geological samples is the basic work of geochemical research. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has become the most powerful tools of elemental analysis as its advantages of direct solid sampling, avoiding the cumbersome wet chemical digestion process of traditional analytical techniques, low-pollution and low-consumption and high-efficiency. However, the small sample volume of laser ablation cannot represent the chemical composition of complex and inhomogeneous samples, resulting in poor analytical precision and accuracy, which hinders its application in whole-rock bulk analysis. It is critical to prepare complex whole-rock geological samples into homogeneous and stable sample targets.

    OBJECTIVES

    To establish a green and efficient pretreatment technique for LA-ICP-MS whole rock analysis of complex geological samples.

    METHODS

    The samples were first calcined at 1000-1100℃ to remove volatiles, pressed into pellets, and then melted by high-energy wide pulse width infrared laser irradiation to finally obtain a homogeneous and stable sample glass.

    RESULTS

    Compared with pressed powder pellets, the new sample preparation procurement improved the analytical precision of each element in marine sediments GBW07354 and GBW07356 by an average of 7.7 times and 3.9 times, respectively. The deviation between the measured values and reference values of most elements in marine sediment samples was within 10%; the deviation between the measured values and reference values of most major elements, REEs, and other trace elements in soil composition standards was within 5%, 20%, and 15%, respectively; the number of elements measured in bauxite samples reached 40, and the compositions of Sc and W elements were given for the first time.

    CONCLUSIONS

    Rapid and accurate analysis of major and trace elements in marine sediment, soil, and bauxite standard samples has been determined through the optimized pretreatment technique. The sample preparation procurement established in this paper allows the LA-ICP-MS technique to be directly and better applied to the elemental analysis of complex geological whole rock samples, further improving the efficiency of major and trace element analysis in geological samples.

  • 加载中
  • [1] Moreda P A, Barciela A D C, Dominguez G R, et al. Alternative solid sample pretreatment methods in green analytical atomic spectrometry[J]. Spectroscopy Letters, 2009, 42(6-7): 394−417. doi: 10.1080/00387010903187393

    CrossRef Google Scholar

    [2] Arroyo L, Trejos T, Hosick T, et al. Analysis of soils and sediments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): An innovative tool for environmental forensics[J]. Environmental Forensics, 2010, 11(4): 315−327. doi: 10.1080/15275922.2010.494949

    CrossRef Google Scholar

    [3] Vannoorenberghe M, van Acker T, Belza J, et al. Multi-element LA-ICP-MS analysis of the clay fraction of archaeological pottery in provenance studies: A methodological investigation[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(11): 26810−2696.

    Google Scholar

    [4] Jantzi S C, Dutton C L, Saha A, et al. Novel “filter pellet” sample preparation strategy for quantitative LA-ICP-MS analysis of filter-bound sediments: A “green chemistry” alternative to sediment fingerprinting in Tanzania’s Ruvu River Basin[J]. Journal of Soils and Sediments, 2019, 19(1): 478−490. doi: 10.1007/s11368-018-2076-2

    CrossRef Google Scholar

    [5] Susset M, Leduc-Gauthier A, Humbert A C, et al. Comparison of the fluctuations of the signals measured by ICP-MS after laser ablation of powdered geological materials prepared by four methods[J]. Analytical Sciences, 2023, 39(6): 999−1014. doi: 10.1007/s44211-023-00309-5

    CrossRef Google Scholar

    [6] Hu Z C, Qi L. Sample Digestion Methods[M]//Treatise on Geochemistry (Second Edition), 2014: 87-109.

    Google Scholar

    [7] 张晨西, 苗琦, 倪倩. 地质全岩样品LA-ICP-MS整体分析的前处理方法[J]. 矿物岩石地球化学通报, 2016, 35(3): 479−486. doi: 10.3969/j.issn.1007-2802.2016.03.011

    CrossRef Google Scholar

    Zhang C X, Miao Q, Ni Q. Sample preparation methods for bulk analysis of geological materials by using LA-ICP-MS[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 479−486. doi: 10.3969/j.issn.1007-2802.2016.03.011

    CrossRef Google Scholar

    [8] Zhang W, Hu Z C, Liu Y, et al. Quantitative analysis of major and trace elements in NH4HF2-modified silicate rock powders by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2017, 983: 149−159. doi: 10.1016/j.aca.2017.06.039

    CrossRef Google Scholar

    [9] Pakiela M, Wojciechowski M, Wagner B, et al. A novel procedure of powdered samples immobilization and multi-point calibration of LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(7): 1539−1543. doi: 10.1039/c0ja00201a

    CrossRef Google Scholar

    [10] Zhu Y B, Hioki A, Chiba K. Quantitative analysis of the elements in powder samples by LA-ICP-MS with PMMA powder as the binder and Cs as the internal standard[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(2): 301−306. doi: 10.1039/c2ja30279a

    CrossRef Google Scholar

    [11] Bao Z A, Zhang H F, Yuan H L, et al. Flux-free fusion technique using a boron nitride vessel and rapid acid digestion for determination of trace elements by ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(11): 2261−2271. doi: 10.1039/C6JA00269B

    CrossRef Google Scholar

    [12] Mukherjee P K, Khanna P P, Saini N K. Rapid determination of trace and ultra trace level elements in diverse silicate rocks in pressed powder pellet targets by LA-ICP-MS using a matrix-independent protocol[J]. Geostandards and Geoanalytical Research, 2014, 38(3): 363−379. doi: 10.1111/j.1751-908X.2013.012015.x

    CrossRef Google Scholar

    [13] Wu S T, Karius V, Schmidt B C, et al. Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 575−591. doi: 10.1111/ggr.12230

    CrossRef Google Scholar

    [14] Horner N S, Beauchemin D. The use of sol-gels as solid calibration standards for the analysis of soil samples by laser ablation coupled to inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(4): 715−720. doi: 10.1039/C3JA50374G

    CrossRef Google Scholar

    [15] Klemm W, Bombach G. A simple method of target preparation for the bulk analysis of powder samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Fresenius Journal of Analytical Chemistry, 2001, 370(5): 641−646. doi: 10.1007/s002160100848

    CrossRef Google Scholar

    [16] Hubová I, Holá M, Pinkas J, et al. Examination of sol-gel technique applicability for preparation of pellets for soil analysis by laser ablation inductively coupled plasma optical emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(10): 1238−1243. doi: 10.1039/b701555k

    CrossRef Google Scholar

    [17] Zhang S Y, Zhang H L, Hou Z, et al. Rapid determination of trace element compositions in peridotites by LA‐ICP‐MS using an albite fusion method[J]. Geostandards and Geoanalytical Research, 2018, 43(1): 93−111.

    Google Scholar

    [18] Monsels D A, van Bergen M J, Mason P R D. Determination of trace elements in bauxite using laser ablation-inductively coupled plasma-mass spectrometry on lithium borate glass beads[J]. Geostandards and Geoanalytical Research, 2018, 42(2): 239−251. doi: 10.1111/ggr.12206

    CrossRef Google Scholar

    [19] Malherbe J, Claverie F, Alvarez A, et al. Elemental analyses of soil and sediment fused with lithium borate using isotope dilution laser ablation-inductively coupled plasma-mass spectrometry[J]. Analytica Chimica Acta, 2013, 793: 72−78. doi: 10.1016/j.aca.2013.07.031

    CrossRef Google Scholar

    [20] Carvalho A A C, Alves V C, Silvestre D M, et al. Comparison of fused glass beads and pressed powder pellets for the quantitative measurement of Al, Fe, Si and Ti in bauxite by laser-induced breakdown spectroscopy[J]. Geostandards and Geoanalytical Research, 2017, 41(4): 585−592. doi: 10.1111/ggr.12173

    CrossRef Google Scholar

    [21] Aguilera J A, Aragon C. Analysis of rocks by CSigma laser-induced breakdown spectroscopy with fused glass sample preparation[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(1): 144−152. doi: 10.1039/C6JA00360E

    CrossRef Google Scholar

    [22] Zhang C X, Hu Z C, Zhang W, et al. Green and fast laser fusion technique for bulk silicate rock analysis by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Chemistriy, 2016, 88(20): 10088−10094. doi: 10.1021/acs.analchem.6b02471

    CrossRef Google Scholar

    [23] He Z W, Huang F, Yu H M, et al. A flux-free fusion technique for rapid determination of major and trace elements in silicate rocks by LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2016, 40(1): 5−21. doi: 10.1111/j.1751-908X.2015.00352.x

    CrossRef Google Scholar

    [24] Zhu L Y, Liu Y S, Hu Z C, et al. Simultaneous determination of major and trace elements in fused volcanic rock powders using a hermetic vessel heater and LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2013, 37(2): 207−229. doi: 10.1111/j.1751-908X.2012.00181.x

    CrossRef Google Scholar

    [25] Arroyo L, Trejos T, Gardinali P R, et al. Optimization and validation of a laser ablation inductively coupled plasma mass spectrometry method for the routine analysis of soils and sediments[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(1): 16−25. doi: 10.1016/j.sab.2008.10.027

    CrossRef Google Scholar

    [26] Zeng L W, Wu M F, Chen S, et al. Direct and sensitive determination of Cu, Pb, Cr and Ag in soil by laser ablation microwave plasma torch optical emission spectrometry[J]. Talanta, 2022, 246: 123516. doi: 10.1016/j.talanta.2022.123516

    CrossRef Google Scholar

    [27] 王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306−315.

    Google Scholar

    Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306−315.

    Google Scholar

    [28] 李迎春, 张磊, 尚文郁. 粉末压片-X射线荧光光谱法分析富硒土壤样品中的硒及主次量元素[J]. 岩矿测试, 2022, 41(1): 145−152.

    Google Scholar

    Li Y C, Zhang L, Shang W Y. Determination of selenium, major and minor eleements in selenium-rich soil samples by X-ray fluorescence spectrometry with powder pellet preparation[J]. Rock and Mineral Analysis, 2022, 41(1): 145−152.

    Google Scholar

    [29] Shaheen M E, Fryer B J. A simple solution to expanding available reference materials for laser ablation inductively coupled plasma mass spectrometry analysis: Applications to sedimentary materials[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2011, 66(8): 627−636. doi: 10.1016/j.sab.2011.06.010

    CrossRef Google Scholar

    [30] Duodu G O, Goonetillkek A, Allen C, et al. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2015, 898: 19−27. doi: 10.1016/j.aca.2015.09.033

    CrossRef Google Scholar

    [31] Byers H L, Mchenry L J, Grundl T J. Forty-nine major and trace element concentrations measured in soil reference materials NISTSRM2586, 2587, 2709a, 2710a and 2711a using ICP-MS and wavelength dispersive-XRF[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 433−445. doi: 10.1111/j.1751-908X.2016.00376.x

    CrossRef Google Scholar

    [32] 王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68−76.

    Google Scholar

    Wang N, Xu T M, Wei S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 68−76.

    Google Scholar

    [33] 张颖, 汪虹敏, 王小静, 等. 深海沉积物元素现场测定及方法对比研究[J]. 分析化学, 2018, 46(4): 570−577.

    Google Scholar

    Zhang Y, Wang H M, Wang X J, et al. On-site determination of element concentrations in marine sediments and comparative study of analytical methods[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 570−577.

    Google Scholar

    [34] Prasad A D, Rastogi L, Thangavel S, et al. A single step acid assisted microwave digestion method for the complete dissolution of bauxite and quantitation of its composition (Al2O3, Fe2O3, SiO2, TiO2, Cr2O3, MgO, MnO and V2O5) by ICP-AES[J]. Geostandards and Geoanalytical Research, 2023, 47(2): 403−413. doi: 10.1111/ggr.12481

    CrossRef Google Scholar

    [35] Maslennikova A V, Artemyev D A, Shtenberg M V, et al. Express multi‐element determination in lake sediments by laser ablation mass‐spectrometry (LA‐ICP‐MS)[J]. Limnol Oceanogr Methods, 2020, 18(8): 411−243. doi: 10.1002/lom3.10372

    CrossRef Google Scholar

    [36] Hattendorf B, Latkoczy C, Günther D. Peer reviewed: Laser ablation-ICPMS[J]. Analytical Chemistry, 2003, 75(15): 341A−347A. doi: 10.1021/ac031283r

    CrossRef Google Scholar

    [37] Košler J, Wiedenbeck M, Wirth R, et al. Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon-implications for elemental fractionation during ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2005, 20(5): 402−409. doi: 10.1039/B416269B

    CrossRef Google Scholar

    [38] Luo T, Wang Y, Hu Z C, et al. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 941−949. doi: 10.1039/C4JA00483C

    CrossRef Google Scholar

    [39] 王毅民, 王晓红, 高玉淑, 等. 中国海及大陆架沉积物标准物质系列评介[J]. 中国地质, 2009, 36(5): 1145−1153.

    Google Scholar

    Wang Y M, Wang X H, Gao Y S, et al. A review on the reference material series for China Sea and continental shelf sediments[J]. Geology in China, 2009, 36(5): 1145−1153.

    Google Scholar

    [40] 王毅民, 高玉淑, 韩慧明, 等. 实用地质分析标准物质手册(中-英文对照版)[M]. 北京: 地质出版社, 2003: 206.

    Google Scholar

    Wang Y M, Gao Y S, Han H M, et al. Practical reference material for ceoanalysis (Chinese-English)[M]. Beijing: Geological Publishing House, 2003: 206.

    Google Scholar

    [41] Zhang W, Qi L, Hu Z C, et al. An investigation of digestion methods for trace elements in bauxite and their determination in ten bauxite reference materials using inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2016, 40(2): 195−216. doi: 10.1111/j.1751-908X.2015.00356.x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(1325) PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint