Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 5
Article Contents

LUO Tao, QING Liyuan, LIU Jinyu, ZHANG Wen, HE Tao, HU Zhaochu. Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(5): 996-1006. doi: 10.15898/j.ykcs.202308020117
Citation: LUO Tao, QING Liyuan, LIU Jinyu, ZHANG Wen, HE Tao, HU Zhaochu. Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(5): 996-1006. doi: 10.15898/j.ykcs.202308020117

Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry

  • BACKGROUND

    Trace element information in carbonates provides key constraints for investigating ancient environments, paleoclimate evolution, shell-mantle interactions, diagenesis and mineralization processes. The accurate determination of trace element content in carbonate minerals have always been a primary focus. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) can provide detailed information on trace element content in carbonate minerals. However, the elemental concentrations in carbonate minerals are usually extremely low (from hundreds of pg/g to tens of ng/g). A large spot size (from 44 to 100μm) is often used for trace element measurements in carbonate minerals. Therefore, the detection capability of low-content elements in carbonate minerals and the spatial resolution of LA determination still need to be improved.

    OBJECTIVES

    To develop a new analytical method for determination of low-content trace elements in carbonate minerals with LA-ICP-MS.

    METHODS

    A new local aerosol extraction ablation cell was proposed in this study. Laser ablation was performed using high-repetition rates with the new designed ablation cell. The elemental contents in carbonate reference materials MACS-3, CGSP-A, CGSP-B, CGSP-C, and CGSP-D were determined with both ns and fs LA-Q-ICP-MS with a spot size of 32μm. Here, NIST 610 glass was used as an external calibration material and Ca was used as an internal standard.

    RESULTS

    The obtained peak height of a single laser shot was enhanced by a factor of 13 with the local aerosol extraction ablation cell because of the rapid washout time. The signal intensities were increased by 1.5 times under high-repetition rate laser ablation mode. Therefore, the detection limits of trace elements in carbonate minerals obtained from nanosecond laser ablation at high repetition rates (20Hz) were reduced by 5-8 times compared to conventional analysis (6Hz). The detection limits of trace elements were reduced by 5-10 times with the frequency of femtosecond laser ablation increased from 10Hz to 100Hz. The elemental contents in carbonate reference materials were measured with both ns and fs LA-Q-ICP-MS with a spot size of 32μm. The obtained results of lithophile elements (e.g., Sc, Sr, Y, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Th) in carbonate CGSP series and carbonate MACS-3 showed good agreement with their reference values. However, the measured results of siderophile and chalcophile elements (e.g., Ni, Cu, Zn, As, Cd, Sn, Sb, and Pb) showed systematic bias (>20%), which may be related to the “downhole” fractionation effect caused by the high-repetition rate laser ablation used in this study.

    CONCLUSIONS

    The new designed local aerosol extraction ablation cell combined with high-repetition rate laser ablation mode significantly improved the spital resolution and determination ability of low-content elements in carbonate minerals. The obtained results of lithophile elements in carbonate CGSP series and carbonate MACS-3 showed good agreement with their reference values using ns- and fs-LA-Q-ICP-MS with a spot size of 32m. It is worth noting that the spatial resolution and the detection capability of ultra-low-content elements in carbonate minerals could be further improved with the proposed LA method combined with high-sensitivity magnetic sector mass spectrometry.

  • 加载中
  • [1] Hori M, Ishikawa T, Nagaishi K, et al. Rare earth elements in a stalagmite from Southwestern Japan: A potential proxy for chemical weathering[J]. Geochemical Journal, 2014, 48(1): 73−84. doi: 10.2343/geochemj.2.0287

    CrossRef Google Scholar

    [2] Chen W, Simonetti A. In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history[J]. Chemical Geology, 2013, 353: 151−172. doi: 10.1016/j.chemgeo.2012.04.022

    CrossRef Google Scholar

    [3] Chen C F, Liu Y S, Foley S F, et al. Carbonated sediment recycling and its contribution to lithospheric refertilization under the Northern North China Craton[J]. Chemical Geology, 2017, 466: 641−653. doi: 10.1016/j.chemgeo.2017.07.016

    CrossRef Google Scholar

    [4] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557−1565. doi: 10.1016/S0016-7037(99)00400-7

    CrossRef Google Scholar

    [5] Chen L, Liu Y S, Hu Z C, et al. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J]. Chemical Geology, 2011, 284(3-4): 283−295.

    Google Scholar

    [6] Sun D Y, Liu J, Fan C Z, et al. New CGSP carbonate matrix reference materials for LA-ICP-MS analysis[J]. Geostandards and Geoanalytical Research, 2023, 47(1): 7−22. doi: 10.1111/ggr.12460

    CrossRef Google Scholar

    [7] Desmarchelier J M, Hellstrom J C, McCulloch M T. Rapid trace element analysis of speleothems by ELA-ICP-MS[J]. Chemical Geology, 2006, 231(1-2): 102−117. doi: 10.1016/j.chemgeo.2006.01.002

    CrossRef Google Scholar

    [8] Fairchild I J, Treble P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28(5-6): 449−468. doi: 10.1016/j.quascirev.2008.11.007

    CrossRef Google Scholar

    [9] Treble P, Shelley J, Chappell J. Comparison of high resolution sub-annual records of trace elements in a modern (1911—1992) speleothem with instrumental climate data from Southwest Australia[J]. Earth and Planetary Science Letters, 2003, 216(1-2): 141−153. doi: 10.1016/S0012-821X(03)00504-1

    CrossRef Google Scholar

    [10] Smrzka D, Zwicker J, Bach W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: A review[J]. Facies, 2019, 65: 1−47. doi: 10.1007/s10347-018-0543-2

    CrossRef Google Scholar

    [11] Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones[J]. Geochemical Journal, 1991, 25(1): 31-44.

    Google Scholar

    [12] 陈琳莹, 李崇瑛, 陈多福. 碳酸盐岩中碳酸盐矿物稀土元素分析方法进展[J]. 矿物岩石地球化学通报, 2012, 31(2): 177−183. doi: 10.3969/j.issn.1007-2802.2012.02.012

    CrossRef Google Scholar

    Chen L Y, Li C Y, Chen D F. Progress of analytical methods of rare earth elements of carbonate minerals in carbonate rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(2): 177−183. doi: 10.3969/j.issn.1007-2802.2012.02.012

    CrossRef Google Scholar

    [13] Akagi T, Hashimoto Y, Fu F, et al. Variation of the distribution coefficients of rare earth elements in modern coral-lattices: Species and site dependencies[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2265−2273. doi: 10.1016/j.gca.2003.12.014

    CrossRef Google Scholar

    [14] Tan L, Shen C C, Cai Y, et al. Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China[J]. Quaternary Research, 2014, 81(2): 181−188. doi: 10.1016/j.yqres.2013.12.001

    CrossRef Google Scholar

    [15] Arkhipkin A I, Schuchert P C, Danyushevsky L. Otolith chemistry reveals fine population structure and close affinity to the Pacific and Atlantic oceanic spawning grounds in the migratory southern blue whiting (Micromesistius Australis)[J]. Fisheries Research, 2009, 96(2-3): 188−194. doi: 10.1016/j.fishres.2008.11.002

    CrossRef Google Scholar

    [16] Jenner F E, Arevalo R D. Major and trace element analysis of natural and experimental igneous systems using LA-ICP-MS[J]. Elements, 2016, 12(5): 311−316. doi: 10.2113/gselements.12.5.311

    CrossRef Google Scholar

    [17] 刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS 在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3753−3769. doi: 10.1360/csb2013-58-36-3753

    CrossRef Google Scholar

    Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(36): 3753−3769. doi: 10.1360/csb2013-58-36-3753

    CrossRef Google Scholar

    [18] 罗涛, 胡兆初. 激光剥蚀电感耦合等离子体质谱副矿物 U-Th-Pb 定年新进展[J]. 地球科学, 2022, 47(11): 4122−4144.

    Google Scholar

    Luo T, Hu Z C. Recent advances in U-Th-Pb dating of accessory minerals by laser ablation inductively coupled plasma mass spectrometry Earth Science[J]. Earth Science, 2022, 47(11): 4122−4144.

    Google Scholar

    [19] Liao X H, Hu Z C, Luo T, et al. Determination of major and trace elements in geological samples by laser ablation solution sampling-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1126−1134. doi: 10.1039/C9JA00027E

    CrossRef Google Scholar

    [20] Luo T, Wang Y, Li M, et al. Determination of major and trace elements in alloy steels by nanosecond and femtosecond laser ablation ICP-MS with non-matrix-matched calibration[J]. Atomic Spectroscopy, 2020, 41(1): 11−19. doi: 10.46770/AS.2020.01.002

    CrossRef Google Scholar

    [21] Mertz-Kraus R, Brachert T, Jochum K, et al. LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(1-2): 25−40. doi: 10.1016/j.palaeo.2008.11.015

    CrossRef Google Scholar

    [22] Thompson J A, Thompson J M, Goemann K, et al. Use of non-matrix matched reference materials for the accurate analysis of calcium carbonate by LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2022, 46(1): 97−115. doi: 10.1111/ggr.12405

    CrossRef Google Scholar

    [23] Jochum K P, Scholz D, Stoll B, et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS[J]. Chemical Geology, 2012, 318: 31−44.

    Google Scholar

    [24] Strnad L, Ettler V, Mihaljevic M, et al. Determination of trace elements in calcite using solution and laser ablation ICP‐MS: Calibration to NIST SRM glass and USGS MACS carbonate, and application to real landfill calcite[J]. Geostandards and Geoanalytical Research, 2009, 33(3): 347−355. doi: 10.1111/j.1751-908X.2009.00010.x

    CrossRef Google Scholar

    [25] Bourdin C, Douville E, Genty D. Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, Southeastern France[J]. Chemical Geology, 2011, 290(1-2): 1−11. doi: 10.1016/j.chemgeo.2011.08.006

    CrossRef Google Scholar

    [26] Wu C C, Burger M, Günther D, et al. Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels[J]. Analytica Chimica Acta, 2018, 1018: 54−61. doi: 10.1016/j.aca.2018.02.021

    CrossRef Google Scholar

    [27] Russo R E, Mao X, Gonzalez J J, et al. Femtosecond laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(9): 1072−1075. doi: 10.1039/B202044K

    CrossRef Google Scholar

    [28] Fernández B, Claverie F, Pécheyran C, et al. Direct analysis of solid samples by fs-LA-ICP-MS[J]. TrAC Trends in Analytical Chemistry, 2007, 26(10): 951−966. doi: 10.1016/j.trac.2007.08.008

    CrossRef Google Scholar

    [29] Bian Q, Garcia C C, Koch J, et al. Non-matrix matched calibration of major and minor concentrations of Zn and Cu in brass, aluminium and silicate glass using NIR femtosecond laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(2): 187−191. doi: 10.1039/B513690C

    CrossRef Google Scholar

    [30] Horn I, von Blanckenburg F. Investigation on elemental and isotopic fractionation during 196nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2007, 62(4): 410−422. doi: 10.1016/j.sab.2007.03.034

    CrossRef Google Scholar

    [31] Neff C, Becker P, Günther D. Parallel flow ablation cell for short signal duration in LA-ICP-TOFMS element imaging[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(3): 677−683. doi: 10.1039/D1JA00421B

    CrossRef Google Scholar

    [32] ,Becker P, Günther D. Reducing sample amount for forensic glass analysis using LA-ICP-TOFMS and multivariate statistics[J]. Journal of Analytical Atomic Spectrometry, 2023, 38: 1704-1712.

    Google Scholar

    [33] Hu Z C, Liu Y S, Gao S, et al. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(9): 1192−1203. doi: 10.1039/b803934h

    CrossRef Google Scholar

    [34] Luo T, Wang Y, Hu Z C, et al. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 941−949. doi: 10.1039/C4JA00483C

    CrossRef Google Scholar

    [35] 冯彦同, 张文, 胡兆初, 等. 激光剥蚀电感耦合等离子体质谱仪新分析模式及其在地球科学中的应用[J]. 中国科学: 地球科学, 2022, 52(1): 98-121.

    Google Scholar

    Feng Y T, Zhang W, Hu Z C, et al. A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the Earth sciences[J]. Science China Earth Sciences, 2022, 65(1): 182−196.

    Google Scholar

    [36] Luo T, Hu Z C, Zhang W, et al. Reassessment of the influence of carrier gases He and Ar on signal intensities in 193nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655−1663. doi: 10.1039/C8JA00163D

    CrossRef Google Scholar

    [37] Jochum K P, Weis U, Stoll B, et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines[J]. Geostandards and Geoanalytical Research, 2011, 35(4): 397−429. doi: 10.1111/j.1751-908X.2011.00120.x

    CrossRef Google Scholar

    [38] Fietzke J, Liebetrau V, Günther D, et al. An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(7): 955−961. doi: 10.1039/b717706b

    CrossRef Google Scholar

    [39] Pettke T, Oberli F, Audétat A, et al. Quantification of transient signals in multiple collector inductively coupled plasma mass spectrometry: Accurate lead isotope ratio determination by laser ablation of individual fluid inclusions[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(3): 475−492. doi: 10.1039/C0JA00140F

    CrossRef Google Scholar

    [40] Kappel S, Boulyga S, Dorta L, et al. Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS[J]. Analytical and Bioanalytical Chemistry, 2013, 405: 2943−2955. doi: 10.1007/s00216-012-6674-3

    CrossRef Google Scholar

    [41] 罗涛. LA-ICP-MS 分析过程中 ICP 引起的元素分馏效应研究[D]. 武汉: 中国地质大学(武汉), 2015.

    Google Scholar

    Luo T. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy[D]. Wuhan: China University of Geosciences (Wuhan), 2015.

    Google Scholar

    [42] Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093−1101. doi: 10.1039/b804760j

    CrossRef Google Scholar

    [43] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391−1399. doi: 10.1039/c2ja30078h

    CrossRef Google Scholar

    [44] Wu S T, Yang M, Yang Y H, et al. Improved in situ zircon U-Pb dating at high spatial resolution (5-16μm) by laser ablation-single collector-sector field-ICP-MS using Jet sample and X skimmer cones[J]. International Journal of Mass Spectrometry, 2020, 456: 116394. doi: 10.1016/j.ijms.2020.116394

    CrossRef Google Scholar

    [45] Yuan H L, Bao Z A, Chen K Y, et al. Improving the sensitivity of a multi-collector inductively coupled plasma mass spectrometer via expansion-chamber pressure reduction[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 1011−1017. doi: 10.1039/C8JA00448J

    CrossRef Google Scholar

    [46] Longerich H P, Jackson S E, Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899−904. doi: 10.1039/JA9961100899

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(1155) PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint