Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 1
Article Contents

HU Tingting, LI Zhixiong, CHEN Jiawei. Quantitative Investigation of the Size-dependent Aggregation of Nanoplastics[J]. Rock and Mineral Analysis, 2024, 43(1): 101-113. doi: 10.15898/j.ykcs.202305020058
Citation: HU Tingting, LI Zhixiong, CHEN Jiawei. Quantitative Investigation of the Size-dependent Aggregation of Nanoplastics[J]. Rock and Mineral Analysis, 2024, 43(1): 101-113. doi: 10.15898/j.ykcs.202305020058

Quantitative Investigation of the Size-dependent Aggregation of Nanoplastics

More Information
  • The geochemical behavior of microplastics (MPs) and nanoplastics (NPs) in the environment has become a global hot topic. Aggregation effect is an important factor controlling the geochemical behavior of NPs, yet there is conflicting evidence regarding the dependence of aggregation on NPs size. Investigating the general patterns and dominant mechanisms governing the aggregation behavior of different-sized NPs under various environmental conditions, will provide help in understanding and predicting the fate of NPs with different sizes. The study has shown that NPs with the same chemical composition but different sizes have different stability and mobility under the same conditions. The critical coagulation concentration (CCC) for NPs increases with the decrease in particle size at a fixed surface ζ potential (CCC=325mmol/L, 296mmol/L, 264mmol/L for 50nm, 100nm, and 200nm, respectively); indicating smaller NPs may transport longer distances. As the pH increased from 5.5 to 7, the negative surface charge of 100 and 200nm NPs allowed them to remain stable even at higher ionic strength. However, 50 nm NPs underwent rapid aggregation because of its smaller ζ potential. Therefore, the effects of pH, ionic strength and NPs sizes should be considered comprehensively in predicting and evaluating the geochemical behavior of NPs in the natural environment. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202305020058.

  • 加载中
  • [1] Koelmans A A, Redondo-Hasselerharm P E, Nor N H M, et al. Risk assessment of microplastic particles[J]. Nature Reviews Materials, 2022, 7(2): 138−152. doi: 10.1038/s41578-021-00411-y

    CrossRef Google Scholar

    [2] McDevitt J P, Criddle C S, Morse M, et al. Addressing the issue of microplastics in the wake of the microbead-free waters act—A new standard can facilitate improved policy[J]. Environmental Science & Technology, 2017, 51(12): 6611−6617.

    Google Scholar

    [3] Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838−838. doi: 10.1126/science.1094559

    CrossRef Google Scholar

    [4] Halle T A, Ladirat L, Gendre X, et al. Understanding the fragmentation pattern of marine plastic debris[J]. Environmental Science & Technology, 2016, 50(11): 5668−5675.

    Google Scholar

    [5] Vethaak A D, Legler J. Microplastics and human health[J]. Science, 2021, 371(6530): 672−674. doi: 10.1126/science.abe5041

    CrossRef Google Scholar

    [6] 刘沙沙, 梁绮彤, 陈诺, 等. 纳米塑料对生物的毒性效应及作用机制研究进展[J]. 生态毒理学报, 2022, 17(4): 99-108.

    Google Scholar

    Liu S S, Liang Q T, Chen N, et al. Research progress on toxic effects and mechanisms of nanoplastics on organisms[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 99-108.

    Google Scholar

    [7] Alimi O S, Farner B J, Hernandez L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704−1724.

    Google Scholar

    [8] 胡婷婷, 陈家玮. 土壤中微塑料的吸附迁移及老化作用对污染物环境行为的影响研究进展[J]. 岩矿测试, 2022, 41(3): 353−363. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203002

    CrossRef Google Scholar

    Hu T T, Chen J W. A review on adsorption and transport of microplastics in soil and the effect of ageing on environmental behavior of pollutants[J]. Rock and Mineral Analysis, 2022, 41(3): 353−363. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203002

    CrossRef Google Scholar

    [9] Halle T A, Jeanneau L, Martignac M, et al. Nanoplastic in the North Atlantic subtropical gyre[J]. Environmental Science & Technology, 2017, 51(23): 13689−13697.

    Google Scholar

    [10] Gigault J, Halle A T, Baudrimont M, et al. Current opinion: What is a nanoplastic?[J]. Environmental Pollution, 2018, 235: 1030−1034. doi: 10.1016/j.envpol.2018.01.024

    CrossRef Google Scholar

    [11] Ni B J, Thomas K V, Kim E J. Microplastics and nanoplastics in urban waters[J]. Water Research, 2023, 229: 119473. doi: 10.1016/j.watres.2022.119473

    CrossRef Google Scholar

    [12] Liu L, Xu K X, Zhang B W, et al. Cellular internalization and release of polystyrene microplastics and nanoplastics[J]. Science of the Total Environment, 2021, 779: 146523. doi: 10.1016/j.scitotenv.2021.146523

    CrossRef Google Scholar

    [13] Gigault J, El Hadri H, Nguyen B, et al. Nanoplastics are neither microplastics nor engineered nanoparticles[J]. Nature Nanotechnology, 2021, 16(5): 501−507. doi: 10.1038/s41565-021-00886-4

    CrossRef Google Scholar

    [14] Liu Y J, Hu Y B, Yang C, et al. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments[J]. Water Research, 2019, 163: 114870. doi: 10.1016/j.watres.2019.114870

    CrossRef Google Scholar

    [15] Yuan B, Gan W H, Sun J, et al. Depth profiles of microplastics in sediments from inland water to coast and their influential factors[J]. Science of the Total Environment, 2023, 903: 166151.

    Google Scholar

    [16] Praetorius A, Badetti E, Brunelli A, et al. Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments[J]. Environmental Science:Nano, 2020, 7(2): 351−367. doi: 10.1039/C9EN01016E

    CrossRef Google Scholar

    [17] Wang X J, Bolan N, Tsang D C W, et al. A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications[J]. Journal of Hazardous Materials, 2021, 402: 123496. doi: 10.1016/j.jhazmat.2020.123496

    CrossRef Google Scholar

    [18] Wang J Y, Zhao X L, Wu A M, et al. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters[J]. Environmental Pollution, 2021, 268: 114240. doi: 10.1016/j.envpol.2020.114240

    CrossRef Google Scholar

    [19] Lee C H, Fang J K H. Effects of temperature and particle concentration on aggregation of nanoplastics in freshwater and seawater[J]. Science of the Total Environment, 2022, 817: 152562. doi: 10.1016/j.scitotenv.2021.152562

    CrossRef Google Scholar

    [20] Kim M J, Herchenova Y, Chung J, et al. Thermodynamic investigation of nanoplastic aggregation in aquatic environments[J]. Water Research, 2022, 226: 119286. doi: 10.1016/j.watres.2022.119286

    CrossRef Google Scholar

    [21] Mao Y F, Li H, Huangfu X L, et al. Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations[J]. Environmental Pollution, 2020, 258: 113760. doi: 10.1016/j.envpol.2019.113760

    CrossRef Google Scholar

    [22] Liu L, Song J, Zhang M, et al. Aggregation and deposition kinetics of polystyrene microplastics and nanoplastics in aquatic environment[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 741−747. doi: 10.1007/s00128-021-03239-y

    CrossRef Google Scholar

    [23] Li X, He E, Xia B, et al. Protein corona induced aggregation of differently sized nanoplastics: Impacts of protein type and concentration[J]. Environmental Science: Nano, 2021, 8(6): 1560−1570. doi: 10.1039/D1EN00115A

    CrossRef Google Scholar

    [24] Quevedo I R, Tufenkji N. Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand[J]. Environmental Science & Technology, 2012, 46(8): 4449−4457.

    Google Scholar

    [25] Gong Y Y, Bai Y, Zhao D Y, et al. Aggregation of carboxyl-modified polystyrene nanoplastics in water with aluminum chloride: Structural characterization and theoretical calculation[J]. Water Research, 2022, 208: 117884. doi: 10.1016/j.watres.2021.117884

    CrossRef Google Scholar

    [26] Li J, Yang X J, Zhang Z Z, et al. Aggregation kinetics of diesel soot nanoparticles in artificial and human sweat solutions: Effects of sweat constituents, pH, and temperature[J]. Journal of Hazardous Materials, 2020, 403: 123614.

    Google Scholar

    [27] Chen C Y, Huang W L. Aggregation kinetics of diesel soot nanoparticles in wet environments[J]. Environmental Science & Technology, 2017, 51(4): 2077−2086.

    Google Scholar

    [28] Liu J J, Dai C, Hu Y D. Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid[J]. Environmental Research, 2018, 161: 49−60. doi: 10.1016/j.envres.2017.10.045

    CrossRef Google Scholar

    [29] Petosa A R, Jaisi D P, Quevedo I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions[J]. Environmental Science & Technology, 2010, 44(17): 6532−6549.

    Google Scholar

    [30] Cai L, Hu L L, Shi H H, et al. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics[J]. Chemosphere, 2018, 197: 142−151. doi: 10.1016/j.chemosphere.2018.01.052

    CrossRef Google Scholar

    [31] Lowry G V, Hill R J, Harper S, et al. Guidance to improve the scientific value of Zeta-potential measurements in nanoEHS[J]. Environmental Science:Nano, 2016, 3(5): 953−965. doi: 10.1039/C6EN00136J

    CrossRef Google Scholar

    [32] Yu S J, Shen M H, Li S S, et al. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes[J]. Environmental Pollution, 2019, 255: 113302. doi: 10.1016/j.envpol.2019.113302

    CrossRef Google Scholar

    [33] Lu S H, Zhu K R, Song W C, et al. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions[J]. Science of the Total Environment, 2018, 630: 951−959. doi: 10.1016/j.scitotenv.2018.02.296

    CrossRef Google Scholar

    [34] Tang H, Zhao Y, Yang X N, et al. New insight into the aggregation of graphene oxide using molecular dynamics simulations and extended Derjaguin-Landau-Verwey-Overbeek theory[J]. Environmental Science & Technology, 2017, 51(17): 9674−9682.

    Google Scholar

    [35] 董会军, 董建芳, 王昕洲, 等. pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响[J]. 岩矿测试, 2019, 38(5): 510−517. doi: 10.15898/j.cnki.11-2131/td.201808230096

    CrossRef Google Scholar

    Dong H J, Dong J F, Wang X Z, et al. Effect of pH on determination of various arsenic species in water by HPLC-ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(5): 510−517. doi: 10.15898/j.cnki.11-2131/td.201808230096

    CrossRef Google Scholar

    [36] 孟瑞芳, 杨会峰, 白华, 等. 海河流域大清河平原区地下水化学特征及演化规律分析[J]. 岩矿测试, 2023, 42(2): 383−395.

    Google Scholar

    Meng R F, Yang H F, Bai H, et al. Chemical characteristics and evolutionary patterns of groundwater in the Daqing River Plain area of Haihe Basin[J]. Rock and Mineral Analysis, 2023, 42(2): 383−395.

    Google Scholar

    [37] 曹寒, 张月, 金洁, 等. 土壤中碘的赋存形态及迁移转化研究进展[J]. 岩矿测试, 2022, 41(4): 521−530. doi: 10.15898/j.cnki.11-2131/td.202203170055

    CrossRef Google Scholar

    Cao H, Zhang Y, Jin J, et al. Iodine speciation, transportation, and transformation in soils: A critical review[J]. Rock and Mineral Analysis, 2022, 41(4): 521−530. doi: 10.15898/j.cnki.11-2131/td.202203170055

    CrossRef Google Scholar

    [38] Chen K L, Elimelech M. Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties[J]. Environmental Science & Technology, 2009, 43(19): 7270−7276.

    Google Scholar

    [39] Hsu J P, Liu B T. Effect of particle size on critical coagulation concentration[J]. Journal of Colloid and Interface Science, 1998, 198(1): 186−189. doi: 10.1006/jcis.1997.5275

    CrossRef Google Scholar

    [40] Afshinnia K, Sikder M, Cai B, et al. Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics[J]. Journal of Colloid and Interface Science, 2017, 487: 192−200. doi: 10.1016/j.jcis.2016.10.037

    CrossRef Google Scholar

    [41] Xu C Y, Zhou T T, Wang C L, et al. Aggregation of polydisperse soil colloidal particles: Dependence of Hamaker constant on particle size[J]. Geoderma, 2020, 359: 113999. doi: 10.1016/j.geoderma.2019.113999

    CrossRef Google Scholar

    [42] Pochapski D J, Carvalho dos Santos C, Leite G W, et al. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: Effects of experimental conditions and electrokinetic models on the interpretation of results[J]. Langmuir, 2021, 37(45): 13379−13389. doi: 10.1021/acs.langmuir.1c02056

    CrossRef Google Scholar

    [43] Chowdhury I, Duch M C, Mansukhani N D, et al. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment[J]. Environmental Science & Technology, 2013, 47(12): 6288−6296.

    Google Scholar

    [44] Dong Z Q, Qiu Y P, Zhang W, et al. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater[J]. Water Research, 2018, 143: 518−526. doi: 10.1016/j.watres.2018.07.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1086) PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint