Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 1
Article Contents

LIU Zhenchao, LI Zhixiong, LU Qianshu, WANG Xiaona, ZHANG Song, HU Yaohua. Improvement of the Method for Determining Total Nitrogen in Water Quality Using Alkaline Potassium Persulfate Ultraviolet Spectrophotometry[J]. Rock and Mineral Analysis, 2024, 43(1): 114-123. doi: 10.15898/j.ykcs.202302280028
Citation: LIU Zhenchao, LI Zhixiong, LU Qianshu, WANG Xiaona, ZHANG Song, HU Yaohua. Improvement of the Method for Determining Total Nitrogen in Water Quality Using Alkaline Potassium Persulfate Ultraviolet Spectrophotometry[J]. Rock and Mineral Analysis, 2024, 43(1): 114-123. doi: 10.15898/j.ykcs.202302280028

Improvement of the Method for Determining Total Nitrogen in Water Quality Using Alkaline Potassium Persulfate Ultraviolet Spectrophotometry

More Information
  • Alkaline potassium persulfate (K2S2O8) ultraviolet (UV) spectrophotometry is the routine method to analyze total nitrogen (TN) in water and is important for studying pollutants in water and the geochemical cycling of TN. However, several analytical conditions can influence the accuracy of the results. (1) The blank, purity, and storage time of K2S2O8. For example, a blank UV of K2S2O8 exceeding 0.030 can lead to a significant underestimation of results. (2) The digestion method of bundling colorimetric tubes in high temperature and high pressure is time-consuming. (3) Improper sample storage conditions can lower measurement results. To improve the accuracy and efficiency of TN measurement in water samples, this study compared the storage times of different K2S2O8, different digestion methods, and sample storage methods. The results show that the domestic premium-grade alkaline K2S2O8 should be stored for <30 days (blank UV<0.03). The insertion digestion method is much more efficient (124°C, 20min). Acidification extends samples’ shelf life from 1 day to 7 days. Therefore, choosing domestic premium-grade K2S2O8 and using the modified insertion method for sample digestion results in lower detection limits, higher digestion efficiency, minimal risk of contamination and misplacement, and improved accuracy of TN measurement in water quality analysis.

  • 加载中
  • [1] 左航, 徐晋, 王雪娇, 等. 水质总氮在线分析仪器研究与应用现状[J]. 电子测量技术, 2021, 44(14): 173−176.

    Google Scholar

    Zuo H, Xu J, Wang X J, et al. Research and application of instruments for on-line monitoring water quality of total nitrogen[J]. Electronic Measurement Technology, 2021, 44(14): 173−176.

    Google Scholar

    [2] 王玉功, 王华, 刘建军, 等. 沙棘树干茎流液中总氮总磷联合消解的测定方法[J]. 岩矿测试, 2014, 33(5): 665−669.

    Google Scholar

    Wang Y G, Wang H, Liu J J, et al. Determination method on total nitrogen and total phosphorus in seabuckthorn stem flow liquid with combined digestion[J]. Rock and Mineral Analysis, 2014, 33(5): 665−669.

    Google Scholar

    [3] 任坤, 潘晓东, 彭聪, 等. 氮氧同位素和水化学解析昭通盆地地下水硝酸盐来源及对环境的影响[J]. 中国地质, 2022, 49(2): 409−419.

    Google Scholar

    Ren K, Pan X D, Peng C, et al. Identification of nitrate sources of groundwaters in the Zhaotong Basin using hydrochemistry, nitrogen and oxygen isotopes and its impact on the environment[J]. Geology in China, 2022, 49(2): 409−419.

    Google Scholar

    [4] 张华, 王宽, 宋箭, 等. 不同溶解氧水平上覆水中DOM荧光特性及总氮含量评估[J]. 光谱学与光谱分析, 2016, 36(3): 890−895.

    Google Scholar

    Zhang H, Wang K, Song J, et al. The fluorescent properties of dissolved organic matter and assessment of total nitrogen in overlying water with different dissolved oxygen conditions[J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 890−895.

    Google Scholar

    [5] 刘斯文, 黄园英, 赵文博, 等. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价[J]. 岩矿测试, 2022, 41(1): 120−132.

    Google Scholar

    Liu S W, Huang Y Y, Zhao W B, et al. Water quality and health risk assessment of an ion-adsorption type REE mining area of the Huangpi River Basin, Northern Ganzhou of China[J]. Rock and Mineral Analysis, 2022, 41(1): 120−132.

    Google Scholar

    [6] 郭子宁, 王旭升, 向师正, 等. 再生水入渗区典型抗生素分布特征与地下水微生物群落 影响因素研究[J]. 岩矿测试, 2022, 41(3): 451−462.

    Google Scholar

    Guo Z N, Wang X S, Xiang S Z, et al. Distribution characteristics of typical antibiotics in reclaimed water infiltration area and influencing factors of groundwater microbial community[J]. Rock and Mineral Analysis, 2022, 41(3): 451−462.

    Google Scholar

    [7] 李谨丞, 曹文庚, 潘登, 等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(3): 488−498.

    Google Scholar

    Li J C, Cao W G, Pan D, et al. Influences of nitrogen cycle on arsenic enrichment in shallow groundwater from the Yellow River alluvial fan plain[J]. Rock and Mineral Analysis, 2022, 41(3): 488−498.

    Google Scholar

    [8] 韩斌, 林法祥, 丁宇, 等. 海州湾近岸海域水质状况调查与风险评价[J]. 岩矿测试, 2019, 38(4): 429−437.

    Google Scholar

    Han B, Lin F X, Ding Y, et al. Quality survey and risk assessment of the coastal waters of Haizhou Bay[J]. Rock and Mineral Analysis, 2019, 38(4): 429−437.

    Google Scholar

    [9] 王燕, 王艳洁, 赵仕兰, 等. 海水中溶解态总氮测定方法比对及影响因素分析[J]. 海洋环境科学, 2019, 38(4): 644−648.

    Google Scholar

    Wang Y, Wang Y J, Zhao S L, et al. Method comparison and analysis of influence factors for determination of dissolved total nitrogen in seawater[J]. Marine Environmental Science, 2019, 38(4): 644−648.

    Google Scholar

    [10] 丁明军, 杨慧中. 水中总磷和总氮含量的离子色谱测定法[J]. 分析化学, 2012, 40(3): 381−385.

    Google Scholar

    Ding M J, Yang H Z. Determination of total phosphorus and nitrogen in water by ion chromatography[J]. Chinese Journal of Analytical Chemistry, 2012, 40(3): 381−385.

    Google Scholar

    [11] 欧阳钧. 离子色谱法测定水中总氮[J]. 理化检验(化学分册), 2014, 50(7): 906−907.

    Google Scholar

    Ouyang J. Determination of total nitrogen in water by ion chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(7): 906−907.

    Google Scholar

    [12] 张国郁. 离子色谱法测定生活饮用水中总氮和总磷[J]. 理化检验(化学分册), 2014, 50(12): 1577−1578.

    Google Scholar

    Zhang G Y. Determination of total nitrogen and total phosphorus in drinking water by ion chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(12): 1577−1578.

    Google Scholar

    [13] 杨雪. 离子色谱法测定地表水中总氮和总磷[J]. 理化检验(化学分册), 2015, 51(11): 1619−1620.

    Google Scholar

    Yang X. Determination of total nitrogen and total phosphorus in surface water by ion chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(11): 1619−1620.

    Google Scholar

    [14] 唐景静, 黎丽萍, 区一杭. 燃烧氧化-电化学法测定地表水和废水中的总氮[J]. 中国环境监测, 2016, 32(1): 108−111.

    Google Scholar

    Tang J J, Li L P, Qu Y H. The determination of total nitrogen in surface water and waste water samplers by burning oxidation-electrochemical method[J]. Environmental Monitoring in China, 2016, 32(1): 108−111.

    Google Scholar

    [15] 赵洋甬, 赵建平, 黄绍荣, 等. 闭管消解-萘乙二胺分光光度法测定水中总氮[J]. 中国环境监测, 2012, 28(1): 57−59.

    Google Scholar

    Zhao Y Y, Zhao J P, Huang S R, et al. Determination of total nitrogen in water by closed digestion N-(1-naphthyl)ethyle chromogenic reaction[J]. Environmental Monitoring in China, 2012, 28(1): 57−59.

    Google Scholar

    [16] 梁康甫, 杨慧中. 水质总氮在线检测的光谱数据校正方法[J]. 环境工程学报, 2016, 10(12): 7396−7400.

    Google Scholar

    Liang K F, Yang H Z. Calibration method for spectral data of on-line total-nitrogen detection in water[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7396−7400.

    Google Scholar

    [17] 凌琪, 李组成, 罗梦洋, 等. 智能消解/紫外分光光度法测定高氨氮污水中总氮[J]. 中国给水排水, 2014, 30(16): 117−119.

    Google Scholar

    Ling Q, Li Z C, Luo M Y, et al. Measuring TN in high ammonia nitrogen domestics sewage by smart digester and ultraviolet spectrophotometry[J]. China Water & Wastewater, 2014, 30(16): 117−119.

    Google Scholar

    [18] 王中荣, 魏福祥, 王盼盼, 等. 微顺序注射-镉柱还原分光光度法测定海水中总氮[J]. 分析化学, 2016, 44(9): 1328−1334.

    Google Scholar

    Wang Z R, Wei F X, Wang P P, et al. Determination of total nitrogen in seawater by micro sequential injection-cadmium column reduction spectrophotometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(9): 1328−1334.

    Google Scholar

    [19] 杨颖, 程祥圣, 刘鹏霞. 紫外光照还原-流动注射分光光度法测定海水中硝酸盐[J]. 理化检验(化学分册), 2011, 47(5): 514−516.

    Google Scholar

    Yang Y, Cheng X S, Liu P X. FI-spectrophotometric determination of nitrate in seawater by UV irradiation reduction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2011, 47(5): 514−516.

    Google Scholar

    [20] 贾岳清, 周昊, 殷惠民, 等. 水中总氮测定方法的研究进展[J]. 工业水处理, 2020, 40(2): 1−5.

    Google Scholar

    Jia Y Q, Zhou H, Yin H M, et al. Progress in determination of total nitrogen in water[J]. Industrial Water Treatment, 2020, 40(2): 1−5.

    Google Scholar

    [21] 周英杰, 王淑梅, 陈少华. 影响总氮测定的关键因素研究[J]. 环境工程, 2012, 30(1): 106−110.

    Google Scholar

    Zhou Y J, Wang S M, Chen S H. Key factors on the accuracy of total nitrogen analysis[J]. Environmental Engineering, 2012, 30(1): 106−110.

    Google Scholar

    [22] 祝旭初, 周雪莲, 雷迅, 等. 对测定总氮新标准( HJ636—2012)的探讨[J]. 中国给水排水, 2013, 29(16): 94−97.

    Google Scholar

    Zhu X C, Zhou X L, Lei X, et al. Discussion on new standard method HJ636—2012 for determining total nitrogen[J]. China Water & Wastewater, 2013, 29(16): 94−97.

    Google Scholar

    [23] 郝冬亮. 碱性过硫酸钾消解紫外分光光度法测定总氮的影响因素[J]. 中国给水排水, 2014, 30(12): 148−150.

    Google Scholar

    Hao D L. Influence factors of alkaline potassium persulfate digestion UV spectrophotometry for determination of total nitrogen[J]. China Water & Wastewater, 2014, 30(12): 148−150.

    Google Scholar

    [24] 张念, 刘祖文, 郭云, 等. 浸矿废水中总氮测量的影响因素及相关对策[J]. 工业水处理, 2016, 36(5): 102−105.

    Google Scholar

    Zhang N, Liu Z W, Guo Y, et al. Influential factors and related countermeasures of the determination of TN in mine leaching wastewater[J]. Industrial Water Treatment, 2016, 36(5): 102−105.

    Google Scholar

    [25] 林莉莉, 钟旋, 包思聪, 等. 影响水中总氮检测准确度的关键因素探析[J]. 环境工程, 2017, 35(Supplement): 119−122.

    Google Scholar

    Lin L L, Zhong X, Bao S C, et al. Research on the key factors influencing on detection of total nitrogen in water[J]. Environmental Engineering, 2017, 35(Supplement): 119−122.

    Google Scholar

    [26] 蒋然, 柴欣生, 张翠. 影响总氮准确定量的光谱检测因素[J]. 中国环境监测, 2012, 28(4): 45−47.

    Google Scholar

    Jiang R, Chai X S, Zhang C. Effects of spectroscopic uncertainties on total nitrogen quantification[J]. Environmental Monitoring in China, 2012, 28(4): 45−47.

    Google Scholar

    [27] 罗琼, 刘则华, 尹华, 等. 国产过硫酸钾不能用于水样总氮测定的原因解析和对策[J]. 中国给水排水, 2018, 34(4): 110−113.

    Google Scholar

    Luo Q, Liu Z H, Yin H, et al. Analysis and countermeasure of total nitrogen determination failure in water sample with domestic potassium persulfate[J]. China Water & Wastewater, 2018, 34(4): 110−113.

    Google Scholar

    [28] 王小剑, 张海霞, 蔡昂祖, 等. 总氮测定过程中空白吸光值偏高的原因分析[J]. 化学研究与应用, 2021, 33(4): 741−748.

    Google Scholar

    Wang X J, Zhang H X, Cai A Z, et al. Cause analysis of high blank absorbance in determination of total nitrogen[J]. Chemical Research and Application, 2021, 33(4): 741−748.

    Google Scholar

    [29] 晁雷, 曹雨, 李亚峰. 水质总氮测定时空白值的影响因素[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(5): 949−954.

    Google Scholar

    Chao L, Cao Y, Li Y F. Influencing factors of blank value in the determination of total nitrogen in water[J]. Journal of Shenyang Jianzhu University (Natural Science), 2021, 37(5): 949−954.

    Google Scholar

    [30] 潘忠成, 李敏. HJ636—2012测定总氮时影响空白值因素分析[J]. 环境工程, 2016, 34(1): 126−129.

    Google Scholar

    Pan Z C, Li M. Analysis of influencing factors on the blank value of total nitrogen determination by HJ636—2012[J]. Environmental Engineering, 2016, 34(1): 126−129.

    Google Scholar

    [31] 薛程, 吕晓杰, 王允. 水中总氮测定方法存在问题的研究及改进[J]. 中国环境监测, 2018, 34(3): 123−127.

    Google Scholar

    Xue C, Lyu X J, Wang Y. Research on the problems and improvement of total nitrogen determination method in water[J]. Environmental Monitoring in China, 2018, 34(3): 123−127.

    Google Scholar

    [32] 陈松, 梁娟, 蒲宗耀, 等. 碱性过硫酸钾测定总氮的改进[J]. 印染, 2018(1): 54−56.

    Google Scholar

    Chen S, Liang J, Pu Z Y, et al. Improvement for determination of total nitrogen in water with alkaline potassium persulfate[J]. China Dyeing & Finishing, 2018(1): 54−56.

    Google Scholar

    [33] 钟金鸣, 王树谦. 滏阳河总氮测定中水样保存条件的探究[J]. 水电能源科学, 2018, 36(7): 43−46.

    Google Scholar

    Zhong J M, Wang S Q. Prediction model of total nitrogen concentration in Qinghe Reservoir based on grey relational grade and BP neural network[J]. Water Resources and Power, 2018, 36(7): 43−46.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(2222) PDF downloads(128) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint