Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 6
Article Contents

WAN Xin, WANG Xianguang, HU Zhenghua, XIAO Yuru, HU Qiuping, SHI Pengchao, ZHANG Yongwen, FENG Zenghui. Re-Os Isotope Dating of the Natural Micro/Nano Silicon-Carbon Deposit in Fengcheng City, Jiangxi Province[J]. Rock and Mineral Analysis, 2023, 42(6): 1078-1089. doi: 10.15898/j.ykcs.202302020013
Citation: WAN Xin, WANG Xianguang, HU Zhenghua, XIAO Yuru, HU Qiuping, SHI Pengchao, ZHANG Yongwen, FENG Zenghui. Re-Os Isotope Dating of the Natural Micro/Nano Silicon-Carbon Deposit in Fengcheng City, Jiangxi Province[J]. Rock and Mineral Analysis, 2023, 42(6): 1078-1089. doi: 10.15898/j.ykcs.202302020013

Re-Os Isotope Dating of the Natural Micro/Nano Silicon-Carbon Deposit in Fengcheng City, Jiangxi Province

More Information
  • BACKGROUND

    The micro/nano silicon-carbon deposit in Fengcheng City, Jiangxi Province, is the first sedimentary deposit mineralized by phytoliths in the world. According to the research carried out here, micro/nano silicon-carbon ore may have been formed by the long-term accumulation and consolidation of phytoliths. In terms of distribution range, genetic type and resource type, the micro/nano silicon-carbon deposit has many new features. Therefore, considering the particularity of the deposit, it is of great significance to carry out research, especially chronological research. Moreover, Re-Os isotope system of organic-enriched sedimentary rocks has been applied to directly dating deposition ages or stratigraphic boundary age, which has made many achievements in chronological research. However, most of the studies focus on marine sediments samples, while lacustrine sediments samples are rarely affected by many factors, such as provenance, geological processes, and terrigenous clastic materials.

    OBJECTIVES

    To accurately determine the mineralization age of the natural micro/nano silicon-carbon deposit.

    METHODS

    Re-Os isotope testing was used to date the phytolith rock samples (lacustrine sediment samples) in the lower section of the Shilukeng Formation in the mining area. Isotope ratios were determined by NTIMS, and GBW04477 (JCBY) was used as the reference material.

    RESULTS

    The Re-Os isotope age of the samples is 43.1±3.7Ma (n=7, MSWD=6.2) which directly defines the diagenetic mineralization age of phytolith rock of the deposit. The high 187Re/188Os value of the samples is closely related to the sedimentary environment and the origin of biological sedimentation. The high initial 187Os/188Os ratio may be related to tectonic movement events, high Os content and migration rate of adjacent strata. The study shows that Re and Os isotopes are adsorbed and sealed in phytolith with organic carbon in the process of enrichment. Owing to the phytolith’s stable silica structure, high temperature resistance and corrosion resistance, the Re-Os isotope system has a good sealing property in it. Protected by the special structure, the organic carbon in phytolith mainly exists in the tiny cavity of phytolith, and the organic carbon has not been exchanged with the outside world due to its storage, which provides favorable conditions for dating. Moreover, the large amount of phytolith in the samples also provides favorable conditions for the enrichment of Re and Os isotopes.

    CONCLUSIONS

    The results of this study provide for the determination of sedimentary age about lacustrine sediments samples by the Re-Os isotope analysis. It is important to strengthen research about the study of Re-Os enrichment mechanism by micro/nano silicon-carbon ore samples.

  • 加载中
  • [1] 顾延生, 李长安, 章泽军. 植硅石分析在第四纪环境研究中的应用[J]. 地质科技情报, 1997(4): 56−59.

    Google Scholar

    Gu Y S, Li C A, Zhang Z J. Application of phytolith analysis in study of vermicular red earth in South China[J]. Geological Science and Technology Information, 1997(4): 56−59.

    Google Scholar

    [2] 左昕昕, 吴乃琴. 植硅体14C测年研究: 过去、现在与未来[J]. 第四纪研究, 2019, 39(1): 59−66. doi: 10.11928/j.issn.1001-7410.2019.01.06

    CrossRef Google Scholar

    Zuo X X, Wu N Q. Phytolith radiocarbon dating: Past, present and future[J]. Quaternary Sciences, 2019, 39(1): 59−66. doi: 10.11928/j.issn.1001-7410.2019.01.06

    CrossRef Google Scholar

    [3] Ravizza G, Turekian K K. Application of the 187Re-187Os system to black shale geochronometry[J]. Geochimica et Cosmochimica Acta, 1989: 3257-3262.

    Google Scholar

    [4] 韩志宇, 王非, 师文贝. 沉积岩定年及应用: 问题与展望[J]. 沉积学报, 2022, 40(2): 360−379.

    Google Scholar

    Han Z Y, Wang F, Shi W B. Dating and application for sedimentary rocks: Problems and prospects[J]. Acta Sedimentologica Sinica, 2022, 40(2): 360−379.

    Google Scholar

    [5] 李超, 屈文俊, 王登红, 等. 富有机质地质样品Re-Os同位素体系研究进展[J]. 岩石矿物学杂志, 2010, 29(4): 421−430. doi: 10.3969/j.issn.1000-6524.2010.04.009

    CrossRef Google Scholar

    Li C, Qu W J, Wang D H, et al. Advances in the study of the Re-Os isotopic system of organic-rich samples[J]. Acta Petrologica et Mineralogica, 2010, 29(4): 421−430. doi: 10.3969/j.issn.1000-6524.2010.04.009

    CrossRef Google Scholar

    [6] 李超, 屈文俊, 王登红, 等. Re-Os同位素在沉积地层精确定年及古环境反演中的应用进展[J]. 地球学报, 2014, 35(4): 405−414. doi: 10.3975/cagsb.2014.04.02

    CrossRef Google Scholar

    Li C, Qu W J, Wang D H, et al. The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeoenvironment[J]. Acta Geoscientia Sinica, 2014, 35(4): 405−414. doi: 10.3975/cagsb.2014.04.02

    CrossRef Google Scholar

    [7] 赵鸿, 李超, 江小均, 等. Re-Os同位素精确厘定长兴“金钉子”灰岩沉积年龄[J]. 科学通报, 2015, 60(23): 2209−2215. doi: 10.1360/N972015-00409

    CrossRef Google Scholar

    Zhao H, Li C, Jiang X J, et al. Direct radiometric dating of limestone from Changxing Permian—Triassic Boundary using the Re-Os geochronometer[J]. China Science Bulletin, 2015, 60(23): 2209−2215. doi: 10.1360/N972015-00409

    CrossRef Google Scholar

    [8] 储著银, 许继峰. 铼-锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245−264. doi: 10.11867/j.issn.1001-8166.2021.024

    CrossRef Google Scholar

    Chu Z Y, Xu J F. Re-Os and PG: Analytical methods and their applications in geosciences[J]. Advances in Earth Science, 2021, 36(3): 245−264. doi: 10.11867/j.issn.1001-8166.2021.024

    CrossRef Google Scholar

    [9] 李欣尉, 李超, 周利敏, 等. 富碳质地质样品Re-Os同位素体系研究进展[J]. 岩矿测试, 2023, 42(2): 1−18. doi: 10.15898/j.ykcs.202207200135

    CrossRef Google Scholar

    Li X W, Li C, Zhou L M, et al. Research progress on Re-Os isotopic system of carbon-enriched geological samples[J]. Rock and Mineral Analysis, 2023, 42(2): 1−18. doi: 10.15898/j.ykcs.202207200135

    CrossRef Google Scholar

    [10] 杨雪. 植硅体碳十四(14C)测年初探[D]. 北京: 中国地震局地质研究所, 2013.

    Google Scholar

    Yang X. A preliminary study of radiocarbon dating (14C) on phytoliths[D]. Beijing: Institute of Geology, China Earthquake Administration, 2013.

    Google Scholar

    [11] 王先广, 胡正华, 肖玉如, 等. 一种植硅石沉积天然微纳米硅碳矿的发现[J]. 地质论评, 2021, 67(6): 1829−1837.

    Google Scholar

    Wang X G, Hu Z H, Xiao Y R, et al. Discovery of a natural micro nano silicon carbon deposit deposited by planting silica[J]. Geological Review, 2021, 67(6): 1829−1837.

    Google Scholar

    [12] 王春连, 王九一, 游超, 等. 战略性非金属矿产厘定、关键应用和供需形势研究[J]. 地球学报, 2022, 43(3): 267−278.

    Google Scholar

    Wang C L, Wang J Y, You C, et al. A study on strategic non-metallic mineral definition, key applications, and supply and demand situation[J]. Acta Geoscientica Sinica, 2022, 43(3): 267−278.

    Google Scholar

    [13] Tang S, Shuai H, Zhao R, et al. Process mineralogy of micro/nano silicon-carbon ore obtained from Jiangxi, China[J]. Minerals (Basel), 2022, 12(6): 1−11.

    Google Scholar

    [14] 邓荣敬, 徐备, 张立勤, 等. 萍乐坳陷西部上古生界—下三叠统烃源岩评价[J]. 天然气工业, 2005, 25(3): 23−28.

    Google Scholar

    Deng R J, Xu B, Zhang L Q, et al. Assessment of the hydrocarbon source rocks in upper Paleozoic—Lower Triassic in West Pingle Depression[J]. Natural Gas Industry, 2005, 25(3): 23−28.

    Google Scholar

    [15] 方朝刚, 滕龙, 郑红军, 等. 萍乐坳陷丰城地区茅口晚期“破裂台地”型沉积相与层序地层学特征[J]. 云南大学学报(自然科学版), 2018, 40(5): 935−946.

    Google Scholar

    Fang C G, Teng L, Zheng H J, et al. On sedimentary facies and sequences stratigraphy characteristics of the upper Maokou Formation “Breaking Platform” type in the Fengcheng area, Pingle Depression[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(5): 935−946.

    Google Scholar

    [16] 吴小力, 李荣西, 李尚儒, 等. 下扬子地区海陆过渡相页岩气成藏条件与主控因素: 以萍乐坳陷二叠系乐平组为例[J]. 地质科技情报, 2018, 37(1): 160−168.

    Google Scholar

    Wu X L, Li R X, Li S R, et al. Accumulation conditions and main factors of marine-continental transitional shale gas in the lower Yangtze area of China: A case of Permian Leping Formation in the Pingle Depression[J]. Geological Science and Technology Information, 2018, 37(1): 160−168.

    Google Scholar

    [17] 叶舟. 中、下扬子区盆地发育特征及其含油气性研究-以洞庭、鄱阳、弋阳及金衢盆地为例[D]. 成都: 西南石油大学, 2006.

    Google Scholar

    Ye Z. Study on developing features and petroliferous characters of basins in middle and lower Yangtze area—Take example for Dongting, Poyang, Yiyang and Jinqu Basins[D]. Chengdu: Southwest Petroleum University, 2006.

    Google Scholar

    [18] 周松源, 张介辉, 徐克定, 等. 从南昌凹陷构造演化分析赣江断裂带运动学特征[J]. 地质力学学报, 2005, 11(3): 266−272.

    Google Scholar

    Zhou S Y, Zhang J H, Xu K D, et al. Analysis of kinematic features of the Ganjiang Fault Zone based on the tectonic evolution of the Nanchang Subbasin[J]. Journal of Geomechanics, 2005, 11(3): 266−272.

    Google Scholar

    [19] 李会军, 张立勤, 梁锋, 等. 江西萍乐坳陷海相含油气系统特征[J]. 新疆石油地质, 2003, 24(3): 210−213. doi: 10.3969/j.issn.1001-3873.2003.03.009

    CrossRef Google Scholar

    Li H J, Zhang L Q, Liang F, et al. The marine petroleum system characteristics of Pingle Depression in Jiangxi Province[J]. Xinjiang Petroleum Geology, 2003, 24(3): 210−213. doi: 10.3969/j.issn.1001-3873.2003.03.009

    CrossRef Google Scholar

    [20] 胡正华, 王先广, 陈毓川, 等. 江南钨矿带(江西段)成矿规律[J]. 中国钨业, 2020, 35(5): 10−19.

    Google Scholar

    Hu Z H, Wang X G, Chen Y C, et al. Metallogenic regularity in Jiangnan metallogenic of Tungsten Belt (Jiangxi section)[J]. China Tungsten Industry, 2020, 35(5): 10−19.

    Google Scholar

    [21] Kendall B, Creaser R A, Selby D. 187Re-187Os geochronology of Precambrian organic-rich sedimentary rocks[M]. London: Geological Society, 2009.

    Google Scholar

    [22] 王礼兵, 屈文俊, 李超, 等. 负离子热表面电离质谱法测量铼的化学分离方法研究[J]. 岩矿测试, 2013, 32(3): 402−408.

    Google Scholar

    Wang L B, Qu W J, Li C, et al. Method study on the separation and enrichment of rhenium measured by negative thermal ionization mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(3): 402−408.

    Google Scholar

    [23] Robert A C, Poulomi S, Thomas C, et al. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3441−3452. doi: 10.1016/S0016-7037(02)00939-0

    CrossRef Google Scholar

    [24] 陈郑辉, 李超, 屈文俊, 等. 石墨Re-Os同位素分析及其在成矿年代学中的初步运用[J]. 岩石学报, 2010, 26(11): 3411−3417.

    Google Scholar

    Chen Z H, Li C, Qu W J, et al. Research and preliminary application in metallogenic chronology of Re-Os isotope system in graphite samples[J]. Acta Petrologica Sinica, 2010, 26(11): 3411−3417.

    Google Scholar

    [25] David S, Robert A C. Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes[J]. Science, 2005, 308(5726): 1293−1295. doi: 10.1126/science.1111081

    CrossRef Google Scholar

    [26] Jiang S, Yang J, Ling H, et al. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the lower Cambrian Niutitang Formation, South China[J]. Progress in Natural Science, 2003, 13(10): 788−794. doi: 10.1080/10020070312331344440

    CrossRef Google Scholar

    [27] 裴浩翔, 付勇, 李超, 等. 贵州道坨锰矿成矿时代及环境的Re-Os同位素证据[J]. 科学通报, 2017, 62(28): 3346−3355.

    Google Scholar

    Pei H X, Fu Y, Li C, et al. Mineralization age and metallogenic environment of Daotuo manganese deposits in Guizhou: Evidence from Re-Os isotopes[J]. Chinese Science Bulletin, 2017, 62(28): 3346−3355.

    Google Scholar

    [28] 严清高, 李超, 江小均, 等. 滇中昆阳磷矿成矿时代及沉积环境Re-Os同位素示踪研究[J]. 岩矿测试, 2018, 37(4): 462−474. doi: 10.15898/j.cnki.11-2131/td.201805040054

    CrossRef Google Scholar

    Yan Q G, Li C, Jiang X J, et al. The age and sedimentary environment of the Kunyang phosphate deposit, Central Yunnan: Constraints from Re-Os isotopes[J]. Rock and Mineral Analysis, 2018, 37(4): 462−474. doi: 10.15898/j.cnki.11-2131/td.201805040054

    CrossRef Google Scholar

    [29] 李欣尉, 李超, 周利敏, 等. 贵州正安县奥陶系—志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演[J]. 岩矿测试, 2020, 39(2): 251−261. doi: 10.15898/j.cnki.11-2131/td.201907310116

    CrossRef Google Scholar

    Li X W, Li C, Zhou L M, et al. Accurate determination of the Carbonaceous mudstone of the Ordovician—Silurian Boundary in Zhengan Country, Guizhou Province by Re-Os isotope dating method and its application in paleoenvironmental inversion[J]. Rock and Mineral Analysis, 2020, 39(2): 251−261. doi: 10.15898/j.cnki.11-2131/td.201907310116

    CrossRef Google Scholar

    [30] 杨競红, 蒋少涌, 凌洪飞, 等. 黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J]. 地学前缘, 2005, 12(2): 143−150. doi: 10.3321/j.issn:1005-2321.2005.02.016

    CrossRef Google Scholar

    Yang J H, Jiang S Y, Ling H F, et al. Re-Os isotope tracing and dating of black shales and oceanic anoxic events[J]. Earth Science Frontiers, 2005, 12(2): 143−150. doi: 10.3321/j.issn:1005-2321.2005.02.016

    CrossRef Google Scholar

    [31] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65Ma to present[J]. Science, 2001, 292(5517): 686−693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [32] Steven M B, James C Z. Significant southern ocean warming event in the late Middle Eocene[J]. Geology, 2003, 31(11): 1017−1020. doi: 10.1130/G19800.1

    CrossRef Google Scholar

    [33] 王健, 彭捷, 操应长, 等. 东营凹陷中晚始新世古气候演化特征及其意义——以Hk1井为例[J]. 沉积学报, 2022, 40(4): 1059−1072. doi: 10.14027/j.issn.1000-0550.2021.010

    CrossRef Google Scholar

    Wang J, Peng J, Cao Y C, et al. Mid-late Eocene Paleoclimate characteristics and significance in the Dongying Depression: An example from well Hk-1[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1059−1072. doi: 10.14027/j.issn.1000-0550.2021.010

    CrossRef Google Scholar

    [34] 刘庆民, 何烈珍. 清江盆地岩盐矿床沉积特征与形成条件[J]. 井矿盐技术, 1982(1): 11−15.

    Google Scholar

    Liu Q M, He L Z. Sedimentary characteristics and formation conditions of rock salt deposits in Qingjiang Basin[J]. Technology of the Well Salt Mine, 1982(1): 11−15.

    Google Scholar

    [35] 何月明, 孙湘君. 江西清江盆地下第三系孢子花粉的初步研究Ⅰ[J]. 植物学报, 1977(1): 72−82.

    Google Scholar

    He Y M, Sun X J. Palynological investigation of Palaeogen in the Qingjiang Basin in Jiangxi Province[J]. Journal of Integrative Plant Biology, 1977(1): 72−82.

    Google Scholar

    [36] 王钦, 马丽, 周仕林. 江西古近纪岩相古地理及其矿产资源概况[J]. 四川地质学报, 2022, 42(1): 24−29.

    Google Scholar

    Wang Q, Ma L, Zhou S L. Sedimentary facies and paleogeography and mineral resources of the paleogene in Jiangxi[J]. Acta Geologica Sichuan, 2022, 42(1): 24−29.

    Google Scholar

    [37] Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the West Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3-4): 533−542. doi: 10.1016/j.jpgl.2007.08.021

    CrossRef Google Scholar

    [38] Li J H, Zhang Y Q, Dong S W, et al. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 2014, 134: 98−136. doi: 10.1016/j.earscirev.2014.03.008

    CrossRef Google Scholar

    [39] 梁兴, 叶舟, 吴根耀, 等. 鄱阳盆地构造-沉积特征及其演化史[J]. 地质科学, 2006(3): 404−429. doi: 10.3321/j.issn:0563-5020.2006.03.004

    CrossRef Google Scholar

    Liang X, Ye Z, Wu G Y, et al. Sedimenta-tectonic features and geological evolution of the Poyang Basin[J]. Chinese Journal of Geology, 2006(3): 404−429. doi: 10.3321/j.issn:0563-5020.2006.03.004

    CrossRef Google Scholar

    [40] Prasad V, Strömberg C A E, Alimohammadian H, et al. Dinosaur coprolites and the early evolution of grasses and grazers[J]. Science, 2005, 310(5751): 1177−1180. doi: 10.1126/science.1118806

    CrossRef Google Scholar

    [41] 吴乃琴. 江西清江盆地临江组非海相腹足类化石及时代讨论[J]. 古生物学报, 1989(6): 751−765. doi: 10.19800/j.cnki.aps.1989.06.008

    CrossRef Google Scholar

    Wu N Q. Nonmarine gastropod fossils from Linjiang Formation (Eocene) of Qingjiang Basin, Jiangxi, China[J]. Acta Palaeontologica Sinica, 1989(6): 751−765. doi: 10.19800/j.cnki.aps.1989.06.008

    CrossRef Google Scholar

    [42] Danish M, Tripathy G R, Mitra S, et al. Non-conservative removal of dissolved rhenium from a coastal lagoon: Clay adsorption versus biological uptake[J]. Chemical Geology, 2021, 580: 120378. doi: 10.1016/j.chemgeo.2021.120378

    CrossRef Google Scholar

    [43] Georgiev S, Stein H J, Hannah J L, et al. Chemical signals for oxidative weathering predict Re-Os isochroneity in black shales, East Greenland[J]. Chemical Geology, 2012, 324-325: 108−121. doi: 10.1016/j.chemgeo.2012.01.003

    CrossRef Google Scholar

    [44] Lúcio T, Souza N J A, Selby D. Late Barremian/early Aptian Re-Os age of the Ipubi Formation black shales: Stratigraphic and paleoenvironmental implications for Araripe Basin, Northeastern Brazil[J]. Journal of South American Earth Sciences, 2020, 102: 102699. doi: 10.1016/j.jsames.2020.102699

    CrossRef Google Scholar

    [45] Ravizza G, Esser B K. A possible link between the seawater osmium isotope record and weathering of ancient sedimentary organic matter[J]. Chemical Geology, 1993, 107(3-4): 255−258. doi: 10.1016/0009-2541(93)90186-M

    CrossRef Google Scholar

    [46] 赵鸿, 李超, 江小均, 等. 浙江长兴“金钉子”灰岩Re-Os富集机制研究[J]. 地质学报, 2015, 89(10): 1783−1791. doi: 10.3969/j.issn.0001-5717.2015.10.006

    CrossRef Google Scholar

    Zhao H, Li C, Jiang X J, et al. Enrichment mechanism of Re-Os in limestone from Changxing Permian—Trassic Boundary in Zhejiang[J]. Acta Geologica Sinica, 2015, 89(10): 1783−1791. doi: 10.3969/j.issn.0001-5717.2015.10.006

    CrossRef Google Scholar

    [47] Esser B K, Turekian K K. The osmium isotopic composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1993, 57(13): 3093−3104. doi: 10.1016/0016-7037(93)90296-9

    CrossRef Google Scholar

    [48] Sun W, Bennett V C, Eggins S M, et al. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas[J]. Nature, 2003, 422: 294−297. doi: 10.1038/nature01482

    CrossRef Google Scholar

    [49] Chen N, Zhong L, Jie D, et al. Characteristics of phytolith-occluded organic carbon sequestration in typical plant communities in the Songnen grassland, China[J]. Ecological Engineering, 2021, 173: 106442. doi: 10.1016/j.ecoleng.2021.106442

    CrossRef Google Scholar

    [50] 陈念康, 介冬梅, 高桂在, 等. 植硅体元素封存研究进展[J]. 微体古生物学报, 2022, 39(4): 348−360.

    Google Scholar

    Chen N K, Jie D M, Gao G Z, et al. Advance in the study of phytolith-occluded element sequestration[J]. Acta Micropalaeontologica Sinica, 2022, 39(4): 348−360.

    Google Scholar

    [51] Prychid C J, Rudall P J, Gregory M. Systematics and biology of silica bodies in monocotyledons[J]. The Botanical Review, 2003, 69(4): 377−440. doi: 10.1663/0006-8101(2004)069[0377:SABOSB]2.0.CO;2

    CrossRef Google Scholar

    [52] 刘桂建, 彭子成, 杨刚, 等. 煤中黄铁矿的铼-锇同位素含量及其地质意义[J]. 地学前缘, 2006, 13(1): 211−215. doi: 10.3321/j.issn:1005-2321.2006.01.028

    CrossRef Google Scholar

    Liu G J, Peng Z C, Yang G, et al. Abundance and geological significance of rhenium and osmium in pyrite samples from coals[J]. Earth Science Frontiers, 2006, 13(1): 211−215. doi: 10.3321/j.issn:1005-2321.2006.01.028

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(873) PDF downloads(105) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint