Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 6
Article Contents

SUN Xinyu, LI Lixing, LI Houmin, ZHANG Yongmei, MENG Jie, LI Xiaosai, WANG Yi. The Ore-forming Age of the Uranium Mineralization Associated with Precambrian Sedimentary-Metamorphic Iron Deposits in Eastern Liaoning Province and Reliability Analysis of Dating Results[J]. Rock and Mineral Analysis, 2023, 42(6): 1090-1103. doi: 10.15898/j.ykcs.202301020001
Citation: SUN Xinyu, LI Lixing, LI Houmin, ZHANG Yongmei, MENG Jie, LI Xiaosai, WANG Yi. The Ore-forming Age of the Uranium Mineralization Associated with Precambrian Sedimentary-Metamorphic Iron Deposits in Eastern Liaoning Province and Reliability Analysis of Dating Results[J]. Rock and Mineral Analysis, 2023, 42(6): 1090-1103. doi: 10.15898/j.ykcs.202301020001

The Ore-forming Age of the Uranium Mineralization Associated with Precambrian Sedimentary-Metamorphic Iron Deposits in Eastern Liaoning Province and Reliability Analysis of Dating Results

More Information
  • BACKGROUND

    The eastern Liaoning Province represents the eldest hydrothermal uranium ore cluster area in China. Two ore types are classified, including independent uranium mineralization and uranium mineralization associated with Precambrian sedimentary-metamorphic iron deposits. The ore-forming age of the former type has been well constrained at ~1.85Ga, whereas the age of the latter type remains uncertain. Iron deposit-associated uranium mineralization developed in the Wengquangou B-Mg-Fe deposit, the Gaojiagou Fe deposit, and the Gongchangling Fe deposit. Geochronological studies on uraninite of the Wengquangou deposit yielded variable ages ranging from 2.0 to 1.8Ga[11-14], with some ages even older than the depositional ages of the hosting Liaohe Group (2.05 to 1.93Ga[15]). This inconsistency suggests that some uraninite grains used for dating are detrital in origin. The lack of reliable age constraints on the iron deposit-associated uranium mineralization has raised questions about its origin. It remains unknown whether the iron deposit-associated uranium mineralization resulted from the same hydrothermal process and formed at the same tectonic setting when compared with the independent uranium mineralization.

    OBJECTIVES

    To determine the metallogenic age and verify the accuracy of the age in uranium.

    METHODS

    The instrument JXA-iHP200F was used for analysis, and the age was calculated according to Ranchin’s empirical formula[38]. The analytical conditions were 20kV acceleration voltage, 50nA beam current, and 5μm beam spot size. A further LA-ICP-MS U-Pb dating method was used to verify the EPMA chemical ages of the uraninite, using a 193nm GeoLasPro and Agilent 7900 ICP-MS with a laser spot size of 16μm.

    RESULTS

    The calculated age of the Wengquangou deposit ranges from 1899 to 1324Ma, but it is mainly concentrated from 1899 to 1741Ma. Two peaks at 1859Ma and 1784Ma are constrained by an age frequency distribution histogram. This result is younger than the deposition age of the Liaohe Group. The age of the Gongchangling deposit ranges from 1858Ma to 1715Ma, with two peaks at 1865Ma and 1743Ma constrained by an age frequency distribution histogram. In the Wengquangou deposit, the position for uraninite LA-ICP-MS U-Pb dating corresponds to EPMA analytical points. The weighted mean ages are grouped into 1840±16Ma (MSWD=2.0) and 1787±8Ma (MSWD=0.95), which are consistent with the results obtained by EPMA. The loss of Pb can result in disruption of U-Th-Pb isotope system and thus affect the calculated ages. The loss of Pb can be probed because it is generally considered to be positively correlated with Si, Ca and Fe contents. The SiO2+CaO+FeO contents of most measuring spots of uraninite of the two deposits is less than 1%, and show no correlation with Pb contents, indicating that the loss of Pb is negligible.

    CONCLUSIONS

    The uranium mineralization associated with iron deposits has been constrained at ~1.85Ga and then experienced hydrothermal superposition at ~1.78Ga. The age results indicate that both the independent and iron ore-associated uranium mineralization in the eastern Liaoning Province was formed at ~1.85Ga, linking to a Proterozoic post-orogenic extensional environment in the eastern North China craton. The ore-forming fluids of different deposits of iron associated uranium deposits are all alkaline and oxidated but vary in fluid composition and temperature. This study highlights combined application of EPMA and LA-ICP-MS dating methods on uraninite, realizing the complementary advantages of spatial resolution and dating precision.

  • 加载中
  • [1] Skirrow R G,van der Wielen S E,Champion D C,et al. Lithospheric architecture and mantle metasomatism linked to iron oxide Cu-Au ore formation:Multidisciplinary evidence from the Olympic Dam region,South Australia[J]. Geochemistry,Geophysics,Geosystems, 2018, 19(8): 2673−2705.

    Google Scholar

    [2] Robb L J,Davis D W,Kamo S L,et al. Ages of altered granites adjoining the Witwatersrand Basin with implications for the origin of gold and uranium[J]. Nature, 1992, 357(6380): 677−680. doi: 10.1038/357677a0

    CrossRef Google Scholar

    [3] 蔡煜琦,张金带,李子颖,等. 中国铀矿资源特征及成矿规律概要[J]. 地质学报, 2015, 89(6): 1051−1069.

    Google Scholar

    Cai Y Q,Zhang J D,Li Z Y,et al. Characteristics and metallogenic regularity of uranium deposits in China[J]. Acta Geographica Sinica, 2015, 89(6): 1051−1069.

    Google Scholar

    [4] 李延河,段超,赵悦,等. 氧化还原障在热液铀矿成矿中的作用[J]. 地质学报, 2016, 90(2): 201−218.

    Google Scholar

    Li Y H,Duan C,Zhao Y,et al. The role of oxidizing reducing barrier in mineralization of hydrothermal uranium ore[J]. Acta Geologica Sinica, 2016, 90(2): 201−218.

    Google Scholar

    [5] 朱鹏飞,蔡煜琦,郭庆银,等. 中国铀矿资源成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3): 148−158.

    Google Scholar

    Zhu P F,Cai Y Q,Guo Q Y,et al. Metallogenetic and geological characterization and resource potential assessment of uranium resources in China[J]. Earth Science Frontiers, 2018, 25(3): 148−158.

    Google Scholar

    [6] 吴迪,刘永江,李伟民,等. 辽东铀成矿带连山关地区韧性剪切带与铀成矿作用[J]. 岩石学报, 2020, 36(8): 2571−2588. doi: 10.18654/1000-0569/2020.08.17

    CrossRef Google Scholar

    Wu D,Liu Y J,Li W M,et al. Ductile shear zone and uranium mineralization in the Lianshanguan area of Eastern Liaoning uranium metallogenic belt[J]. Acta Petrologica Sinica, 2020, 36(8): 2571−2588. doi: 10.18654/1000-0569/2020.08.17

    CrossRef Google Scholar

    [7] 郭春影,李子颖,韩军,等. 辽东大石桥组蛇纹石化大理岩中铀矿化特征及形成时代[J]. 地质通报, 2017, 36(4): 565−574.

    Google Scholar

    Guo C Y,Li Z Y,Han J,et al. Geological features and dating of uraninite in serpentinized dolomite marbles of the Dashiqiao Formation in Eastern Liaoning Province[J]. Geological Bulletin of China, 2017, 36(4): 565−574.

    Google Scholar

    [8] 郭春影,韩军,徐浩,等. 辽东古元古代热液铀矿床形成的大地构造背景[J]. 大地构造与成矿学, 2018, 42(5): 893−907.

    Google Scholar

    Guo C Y,Han J,Xu H,et al. Tectonic settings of Paleoproterozoic hydrothermal uranium deposits in Eastern Liaoning Province,China[J]. Geotectonic et Metallogenia, 2018, 42(5): 893−907.

    Google Scholar

    [9] Zhong J R,Guo Z T. The geological characteristics and metallogenetic control factors of the Lianshanguan uranium deposit,Northeast China[J]. Precambrian Research, 1988, 39(1-2): 51−64. doi: 10.1016/0301-9268(88)90050-2

    CrossRef Google Scholar

    [10] 夏毓亮,韩军. 中国最古老铀矿床成矿年龄及铅同位素示踪铀成矿省[J]. 地球学报, 2008, 29(6): 752−760.

    Google Scholar

    Xia Y L,Han J. Uranium ore-forming ages of the oldest uranium deposits in China and the tracing of uranium metallogenic provinces with lead isotopes[J]. Journal of Earth Sciences, 2008, 29(6): 752−760.

    Google Scholar

    [11] 韩军. 鞍本地区早前寒武纪地球化学、年代学及铀成矿作用同位素示踪[D]. 北京: 核工业北京地质研究院, 2009.

    Google Scholar

    Han J. Early Precambrian geochemistry, chronology and uranium mineralization trace in Ananben area[D]. Beijing: Beijing Institute of Geology of Nuclear Industry, 2009.

    Google Scholar

    [12] 陈璋如,王安然. 硼矿床中的原生铀矿物——晶质铀矿和铅铀方钍石[J]. 矿物学报, 1984(3): 259−264,291-292.

    Google Scholar

    Chen Z R,Wang A R. Primary uranium minerals in boron deposits—Uraninite and aldanite[J]. Acta Mineralogica Sinica, 1984(3): 259−264,291-292.

    Google Scholar

    [13] Lu Y F,Chen Y C,Li H Q,et al. Metallogenic chronology of boron deposits in the Eastern Liaoning Paleoproterozoic rift zone[J]. Acta Geologica Sinica (English Edition), 2005, 79(3): 414−425. doi: 10.1111/j.1755-6724.2005.tb00907.x

    CrossRef Google Scholar

    [14] 赵宇霆,李子颖,郭春影. 辽宁翁泉沟铁-硼-铀矿床成矿年代学研究[J]. 铀矿地质, 2021, 37(3): 433−445.

    Google Scholar

    Zhao Y T,Li Z Y,Guo C Y. Metallogenic chronology of Wengquangou Fe-B-U deposit in Liaoning[J]. Uranium Geology, 2021, 37(3): 433−445.

    Google Scholar

    [15] Luo Y,Sun M,Zhao G,et al. LA-ICP-MS U-Pb zircon ages of the Liaohe group in the eastern block of the North China Craton:Constraints on the evolution of the Jiao—Liao—Ji belt[J]. Precambrian Research, 2004, 134(3-4): 349−371. doi: 10.1016/j.precamres.2004.07.002

    CrossRef Google Scholar

    [16] 葛祥坤. 电子探针Th-U-Pb微区测年方法及其在铀矿地质研究中的应用前景[J]. 铀矿地质, 2008, 24(3): 175−180.

    Google Scholar

    Ge X K. Th-U-Pb dating method of electron probe microanalysis and its application foreground in uranium geology research[J]. Uranium Geology, 2008, 24(3): 175−180.

    Google Scholar

    [17] 赵慧博,刘亚非,阳珊,等. 电子探针测年方法应用于晶质铀矿的成因类型探讨[J]. 岩矿测试, 2014, 33(1): 102−109.

    Google Scholar

    Zhao H B,Liu Y F,Yang S,et al. Study on genetic types of crystalline uranium ore by electron probe dating method[J]. Rock and Mineral Analysis, 2014, 33(1): 102−109.

    Google Scholar

    [18] 李超,王登红,屈文俊,等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669.

    Google Scholar

    Li C,Wang D H,Qu W J,et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669.

    Google Scholar

    [19] 刘勇胜,胡兆初,李明,等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3863−3878.

    Google Scholar

    Liu Y S,Hu Z C,Li M,et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(36): 3863−3878.

    Google Scholar

    [20] 汪双双,韩延兵,李艳广,等. 利用LA-ICP-MS在16μm和10μm激光束斑条件下测定独居石U-Th-Pb年龄[J]. 岩矿测试, 2016, 35(4): 349−357.

    Google Scholar

    Wang S S,Han Y B,Li Y G,et al. U-Th-Pb dating of monazite by LA-ICP-MS using ablation spot sizes of 16μm and 10μm[J]. Rock and Mineral Analysis, 2016, 35(4): 349−357.

    Google Scholar

    [21] 胡靓,张德贤,娄威,等. 含膏盐建造铁矿床中磁铁矿LA-ICP-MS微量元素测定与地球化学特征研究[J]. 岩矿测试, 2022, 41(4): 564−574.

    Google Scholar

    Hu L,Zhang D X,Lou W,et al. In situ LA-ICP-MS determination of trace elements in magnetite from a gypsum-salt bearing iron deposit and geochemical characteristics[J]. Rock and Mineral Analysis, 2022, 41(4): 564−574.

    Google Scholar

    [22] 张招崇,李厚民,李建威,等. 中国铁矿成矿背景与富铁矿成矿机制[J]. 中国科学:地球科学, 2021, 51(6): 827−852.

    Google Scholar

    Zhang Z C,Li H M,Li J W,et al. Geological settings and metallogenesis of high-grade iron deposits in China[J]. Science China:Earth Sciences, 2021, 51(6): 827−852.

    Google Scholar

    [23] Zhao G C,Sun M,Wilde A,et al. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues tevisited[J]. Precambrian Research, 2005, 136(2): 177−202. doi: 10.1016/j.precamres.2004.10.002

    CrossRef Google Scholar

    [24] Li S Z,Zhao G. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids:Constraints on the evolution of the Paleoproterozoic Jiao—Liao—Ji belt in the eastern block of the North China Craton[J]. Precambrian Research, 2007, 158(1-2): 1−16. doi: 10.1016/j.precamres.2007.04.001

    CrossRef Google Scholar

    [25] 马玉波,张勇,李立兴,等. 古元古代胶—辽—吉带造山后转换机制:来自青城子地区花岗岩体年代学与地球化学特征的制约[J]. 岩石学报, 2022, 38(10): 2971−2987. doi: 10.18654/1000-0569/2022.10.05

    CrossRef Google Scholar

    Ma Y B,Zhang Y,Li L X,et al. Orogenic to post-orogenic transition of the Paleoproterozoic Jiao—Liao—Ji belt:Constraints from geochronology and geochemistry of the granites in the Qingchengzi area[J]. Acta Petrologica Sinica, 2022, 38(10): 2971−2987. doi: 10.18654/1000-0569/2022.10.05

    CrossRef Google Scholar

    [26] 王惠初,任云伟,陆松年,等. 辽吉古元古代造山带的地层单元划分与构造属性[J]. 地球学报, 2015, 36(5): 583−598.

    Google Scholar

    Wang H C,Ren Y W,Lu S N,et al. Stratigraphic units and tectonic setting of the Paleoproterozoic Liao—Ji orogen[J]. Journal of Earth Sciences, 2015, 36(5): 583−598.

    Google Scholar

    [27] 刘福来,刘平华,王舫,等. 胶—辽—吉古元古代造山/活动带巨量变沉积岩系的研究进展[J]. 岩石学报, 2015, 31(10): 2816−2846.

    Google Scholar

    Liu L F,Liu P H,Wang F,et al. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao—Liao—Ji orogenic/mobile belt,North China Craton high-grade iron deposit[J]. Acta Petrologica Sinica, 2015, 31(10): 2816−2846.

    Google Scholar

    [28] 胡古月,李延河,范昌福,等. 辽东翁泉沟硼镁铁矿矿床海相蒸发成因:来自稳定同位素地球化学证据[J]. 矿床地质, 2014, 33(4): 821−832. doi: 10.3969/j.issn.0258-7106.2014.04.012

    CrossRef Google Scholar

    Hu G Y,Li Y H,Fan C F,et al. The origin of marine evaporation in the Wengquangou boromagite deposit,Eastern Liaoning Province:Evidence from stable isotope geochemistry[J]. Mineral Deposits, 2014, 33(4): 821−832. doi: 10.3969/j.issn.0258-7106.2014.04.012

    CrossRef Google Scholar

    [29] Li H M,Li L X,Yang X Q,et al. Types and geological characteristics of iron deposits in China[J]. Journal of Asian Earth Sciences, 2015, 103: 2−22. doi: 10.1016/j.jseaes.2014.11.003

    CrossRef Google Scholar

    [30] 李厚民,李延河,李立兴,等. 沉积变质型铁矿成矿条件及富铁矿形成机制[J]. 地质学报, 2022, 96(9): 3211−3233.

    Google Scholar

    Li H M,Li Y H,Li L X,et al. Ore-forming conditions of the sedimentary metamorphic iron deposit and metallogenesis of the high-grade iron deposit[J]. Acta Geologica Sinica, 2022, 96(9): 3211−3233.

    Google Scholar

    [31] 葛祥坤. 电子探针定年技术在铀及含铀矿物测年中的开发与研究[D]. 北京: 核工业北京地质研究院, 2013: 33-80.

    Google Scholar

    Ge X K. Research and development of electron microprobe dating on uranium minerals and U-bearing minerals[D]. Beijing: Beijing Research Institute of Uranium Geology, 2013: 33-80.

    Google Scholar

    [32] 张龙,陈振宇,田泽瑾,等. 电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J]. 岩矿测试, 2016, 35(1): 98−107.

    Google Scholar

    Zhang L,Chen Z Y,Tian Z J,et al. The application of electron microprobe dating method on uranium minerals in Changjiang granite,Northern Guangdong[J]. Rock and Mineral Analysis, 2016, 35(1): 98−107.

    Google Scholar

    [33] 员媛娇,范成龙,吕喜平,等. 电子探针和LA-ICP-MS技术研究内蒙古浩尧尔忽洞金矿床毒砂矿物学特征[J]. 岩矿测试, 2022, 41(2): 211−225. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202007

    CrossRef Google Scholar

    Yuan Y J,Fan C L,Lyu X P,et al. Application of EPMA and LA-ICP-MS to study mineralogy of arsenopyrite from the Haoyaoerhudong gold deposit,Inner Mongolia,China[J]. Rock and Mineral Analysis, 2022, 41(2): 211−225. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202007

    CrossRef Google Scholar

    [34] Zong K Q,Chen J Y,Hu Z C,et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China:Earth Sciences, 2015, 58(10): 1731−1740.

    Google Scholar

    [35] 赵溥云, 李喜斌, 营俊龙, 等. 沥青铀矿铀铅同位素年龄标准物质[R]. 北京: 核工业北京地质研究, 1995: 22.

    Google Scholar

    Zhao B Y, Li X B, Ying J L, et al. Certified reference material for U-Pb isotopic dating (pitchblende)[R]. Beijing: Beijing Research Institute of Uranium Geology, 1995: 22.

    Google Scholar

    [36] Ranchin G. La géochimie de l’uranium et la différenciation granitique dans la province uranifère du Nord-Limousin[J]. Science Terre, 1968, 13: 161−205.

    Google Scholar

    [37] Bowles J F W. Age dating of individual grains of uraninite in rocks from electron microprobe analysis[J]. Chemical Geology, 1990, 83(1-2): 47−53. doi: 10.1016/0009-2541(90)90139-X

    CrossRef Google Scholar

    [38] Kempe U. Precise electron microprobe age determination in altered uraninite:Consequences on the intrusion age and the metallogenic significance of Kirchberg granite (Erzgebirge,Germany)[J]. Contributions to Mineralogy and Petrology, 2003, 145: 107−118. doi: 10.1007/s00410-002-0439-5

    CrossRef Google Scholar

    [39] 肖志斌,耿建珍,涂家润,等. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究[J]. 岩矿测试, 2020, 39(2): 262−273.

    Google Scholar

    Xiao Z B,Geng J Z,Tu J R,et al. In situ U-Pb isotope dating techniques for sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262−273.

    Google Scholar

    [40] 骆金诚,石少华,陈佑纬,等. 铀矿床定年研究进展评述[J]. 岩石学报, 2019, 35(2): 589−605.

    Google Scholar

    Luo J C,Shi S H,Chen Y W,et al. Review on dating of uranium mineralization[J]. Journal of Petrology, 2019, 35(2): 589−605.

    Google Scholar

    [41] 张昭明. 电子探针在测定晶质铀矿年龄中的应用[J]. 放射性地质, 1982(5): 408−411.

    Google Scholar

    Zhang Z M. The application of electron microprobe on dating uraninite[J]. Radioactive Geology, 1982(5): 408−411.

    Google Scholar

    [42] Grandstaff D E. A kinetic study of the dissolution of uraninite[J]. Economic Geology, 1976, 71(8): 1493−1506. doi: 10.2113/gsecongeo.71.8.1493

    CrossRef Google Scholar

    [43] Korzer T G,Kyser T K. O,U,and Pb isotopic and chemical variations in uraninite:Implications for determining the temporal and fluid history of ancient terrains[J]. American Mineralogist, 1993, 78: 1262−1274.

    Google Scholar

    [44] Alexandre P,Kyser T K. Effects of cationic substitutions and alteration in uraninite,and implications for the dating of uranium deposits[J]. Canadian Mineralogist, 2005, 43(3): 1005−1017. doi: 10.2113/gscanmin.43.3.1005

    CrossRef Google Scholar

    [45] 赵岩,李生辉,杨中柱,等. 辽东翁泉沟硼矿区二长花岗岩脉锆石U-Pb年龄及对成矿时代的制约[J]. 地质与资源, 2022, 31(3): 342−350.

    Google Scholar

    Zhao Y,Li S H,Yang Z Z,et al. Zircon U-Pb dating of monzogranite dikes in Wengquangou boron orefield,Eastern Liaoning:Constraints on metallogenic age[J]. Geology and Resources, 2022, 31(3): 342−350.

    Google Scholar

    [46] Li L X,Zi J W,Li H M,et al. High-grade magnetite mineralization at 1.86Ga in Neoarchean banded iron formations,Gongchangling,China:In situ U-Pb geochronology of metamorphic-hydrothermal zircon and monazite[J]. Economic Geology, 2019, 114(6): 1159−1175. doi: 10.5382/econgeo.4678

    CrossRef Google Scholar

    [47] 李三忠,郝德峰,韩宗珠,等. 胶辽地块古元古代构造-热演化与深部过程[J]. 地质学报, 2003, 77(3): 328−340.

    Google Scholar

    Li S Z,Hao D F,Han Z Z,et al. Paleoproterozoic tectonic-thermal evolution and deep process of Jiaoliao block[J]. Acta Geographica Sinica, 2003, 77(3): 328−340.

    Google Scholar

    [48] 牛树银,孙爱群,张建珍,等. 辽宁弓长岭铁矿二矿区构造特征分析[J]. 地质找矿论丛, 2013, 28(2): 167−175.

    Google Scholar

    Niu S Y,Sun A Q,Zhang J Z,et al. Structural analysis of the second mining district of Gongchangling iron mine in Liaoning Province[J]. Contributions to Geology and Mineral Resources Research, 2013, 28(2): 167−175.

    Google Scholar

    [49] Hu G Y,Li Y H,Fan C F,et al. In situ LA-MC-ICP-MS boron isotope and zircon U-Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province,Northeastern China[J]. Ore Geology Reviews, 2015, 65(4): 1127−1141.

    Google Scholar

    [50] Fryer B J,Taylor R P. Rare-earth element distributions in uraninites:Implications for ore genesis[J]. Chemical Geology, 1987, 63(1-2): 101−108. doi: 10.1016/0009-2541(87)90077-5

    CrossRef Google Scholar

    [51] Mukhopadhyay J,Mishra B,Chakrabarti K,et al. Uraniferous paleoplacers of the Meso-Archaean Mahagiri quartzite,Singhbhum Craton,India:Depositional controls,nature and source of >3.0Ga detrital uraninites[J]. Ore Geology Reviews, 2016, 72: 1290−1306. doi: 10.1016/j.oregeorev.2015.05.020

    CrossRef Google Scholar

    [52] 陈佑纬,胡瑞忠,骆金诚,等. 桂北沙子江铀矿床沥青铀矿微区原位年代学和元素分析:对铀成矿作用的启示[J]. 岩石学报, 2019, 35(9): 2679−2694. doi: 10.18654/1000-0569/2019.09.04

    CrossRef Google Scholar

    Chen Y W,Hu R Z,Luo J C,et al. In-situ mineral chemistry and chronology analyses of the pitchblende in the Shazijiang uranium deposit and their implications for mineralization[J]. Acta Petrologica Sinica, 2019, 35(9): 2679−2694. doi: 10.18654/1000-0569/2019.09.04

    CrossRef Google Scholar

    [53] 刘明军,李厚民,李立兴,等. 辽宁弓长岭铁矿床二矿区流体包裹体研究[J]. 矿床地质, 2013, 32(5): 989−1002. doi: 10.3969/j.issn.0258-7106.2013.05.011

    CrossRef Google Scholar

    Liu M J,Li H M,Li L X,et al. A study of fluid inclusions from No. 2 mining area of Gongchangling iron deposit in Liaoning Province[J]. Mineral Deposits, 2013, 32(5): 989−1002. doi: 10.3969/j.issn.0258-7106.2013.05.011

    CrossRef Google Scholar

    [54] 李雪梅,孙丰月,李碧乐,等. 辽东地区后仙峪及翁泉沟硼矿床流体包裹体特征研究[J]. 现代地质, 2007, 21(4): 645−653.

    Google Scholar

    Li X M,Sun F Y,Li B L,et al. Study on the fluid inclusions from Houxianyu and Wengquangou borate deposits in Eastern Liaoning Province[J]. Geoscience, 2007, 21(4): 645−653.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(985) PDF downloads(159) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint