Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 4
Article Contents

ZHANG Tao, SONG Wenlei, CHEN Qian, YANG Jinkun, HU Yi, HUANG Jun, XU Danni, XU Yitong. Application of Automated Quantitative Mineral Analysis System in Process Mineralogy of Low-grade Copper Slag[J]. Rock and Mineral Analysis, 2023, 42(4): 748-759. doi: 10.15898/j.ykcs.202210250206
Citation: ZHANG Tao, SONG Wenlei, CHEN Qian, YANG Jinkun, HU Yi, HUANG Jun, XU Danni, XU Yitong. Application of Automated Quantitative Mineral Analysis System in Process Mineralogy of Low-grade Copper Slag[J]. Rock and Mineral Analysis, 2023, 42(4): 748-759. doi: 10.15898/j.ykcs.202210250206

Application of Automated Quantitative Mineral Analysis System in Process Mineralogy of Low-grade Copper Slag

More Information
  • BACKGROUND

    The high-efficient utilization of mineral resources is the leading research aspect of global mining development. Traditional optical and scanning electron microscopy have limitations in identifying the occurrence of elements in many low-grade ores and usually cannot provide quantitative mineralogy information, hindering the improvement of mineral processing of these ores. In recent years, automated mineral quantitative analysis systems based on scanning electron microscope and X-ray energy spectrometer have been increasingly applied to study complex ore formation and process mineralogy.

    OBJECTIVES

    To enrich and expand the application of an automated quantitative mineral analysis system in process mineralogy.

    METHODS

    The low-grade copper slag from a copper mine in China is analyzed using the TESCAN Integrated Mineral Analyzier (TIMA).

    RESULTS

    The results show that the content of the copper element (0.08%) in the copper slag is very low, and it is mainly distributed in chalcopyrite, which accounts for 0.21%. Gangue minerals include quartz (47.6%), muscovite (10.10%), and calcite (9.88%). Chalcopyrite usually occurs in irregular granular form and shows complex associations with the above gangue minerals. The particle size is small and variable, and the particles of 10-76μm occupy a large proportion. The mass of chalcopyrite with a liberation degree below 30% accounts for 85% of the total mass, and the overall liberation degree is low, so further grinding is needed to improve chalcopyrite recovery.

    CONCLUSIONS

    Research shows that for the ore samples with low content of useful minerals, small particle size, and complex mineralogical associations, the automated mineral analysis system, including TIMA, can provide rapid, quantitative, comprehensive, and accurate process mineralogy parameter information, which is conducive to optimizing the ore extraction and smelting process, and has an extensive application prospect in improving the comprehensive utilization of mineral resources.

  • 加载中
  • [1] 孟晶, 杨洪英, 张忠辉, 等. 青海—阿斯哈矿区金矿工艺矿物学及金赋存状态研究[J]. 有色金属(选矿部分), 2022(5): 1−7,15.

    Google Scholar

    Meng J, Yang H Y, Zhang Z H, et al. Study on process mineralogy and gold hosting state of gold deposits in Qinghai Asha mining area[J]. Nonferrous Metals (Mineral Processing Section), 2022(5): 1−7,15.

    Google Scholar

    [2] 杨波, 杨莉, 沈茂森, 等. TIMA测试技术在白云鄂博矿床铌工艺矿物学中的应用[J]. 矿冶工程, 2021, 41(6): 65−68. doi: 10.3969/j.issn.0253-6099.2021.06.016

    CrossRef Google Scholar

    Yang B, Yang L, Shen M S, et al. Application of TIMA in process mineralogy study of niobium minerals in Bayan Obo deposit[J]. Mining and Metallurgical Engineering, 2021, 41(6): 65−68. doi: 10.3969/j.issn.0253-6099.2021.06.016

    CrossRef Google Scholar

    [3] 陈福林, 杨晓军, 何婷, 等. 四川冕宁牦牛坪稀土矿尾矿工艺矿物学分析[J]. 现代矿业, 2018, 34(8): 110−112.

    Google Scholar

    Chen F L, Yang X J, He T, et al. Process mineralogy analysis of tailings from Mianning Maoniuping rare earth mine in Sichuan Province[J]. Modern Mining, 2018, 34(8): 110−112.

    Google Scholar

    [4] 周乐光. 工艺矿物学(第三版)[M]. 北京: 冶金工业出版社, 2002: 1-301.

    Google Scholar

    Zhou L G. Process mineralogy (The 3rd edition)[M]. Beijing: Metallurgical Industry Press, 2002: 1-301.

    Google Scholar

    [5] 肖仪武, 方明山, 付强, 等. 工艺矿物学研究的新技术与新理念[J]. 矿产保护与利用, 2018(3): 49−54. doi: 10.13779/j.cnki.issn1001-0076.2018.03.009

    CrossRef Google Scholar

    Xiao Y W, Fang M S, Fu Q, et al. New techniques and concepts in process mineralogy[J]. Conservation and Utilization of Mineral Resources, 2018(3): 49−54. doi: 10.13779/j.cnki.issn1001-0076.2018.03.009

    CrossRef Google Scholar

    [6] Gu Y. Automated scanning electron microscope based mineral liberation analysis[J]. Journal of Minerals and Materials Characterization and Engineering, 2003, 2(1): 33−41. doi: 10.4236/jmmce.2003.21003

    CrossRef Google Scholar

    [7] 彭明生, 刘晓文, 刘羽, 等. 工艺矿物学近十年的主要进展[J]. 矿物岩石地球化学通报, 2012, 31(3): 210−217. doi: 10.3969/j.issn.1007-2802.2012.03.003

    CrossRef Google Scholar

    Peng M S, Liu X W, Liu Y, et al. The main advances in process mineralogy in China in the last decade[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(3): 210−217. doi: 10.3969/j.issn.1007-2802.2012.03.003

    CrossRef Google Scholar

    [8] 叶小璐, 肖仪武. 工艺矿物学在选厂流程优化中的作用[J]. 有色金属(选矿部分), 2020(4): 13−16,33. doi: 10.3969/j.issn.1671-9492.2020.04.003

    CrossRef Google Scholar

    Ye X L, Xiao Y W. Role of process mineralogy in process optimization of concentrator[J]. Nonferrous Metals (Mineral Processing Section), 2020(4): 13−16,33. doi: 10.3969/j.issn.1671-9492.2020.04.003

    CrossRef Google Scholar

    [9] 温利刚, 贾木欣, 王清, 等. 基于扫描电子显微镜的自动矿物学新技术——BPMA及其应用前景[J]. 有色金属(选矿部分), 2021(2): 12−23. doi: 10.3969/j.issn.1671-9492.2021.02.003

    CrossRef Google Scholar

    Wen L G, Jia M X, Wang Q, et al. New automatic mineralogy technology based on scanning electron microscope—BPMA and its application prospect[J]. Nonferrous Metals (Mineral Processing), 2021(2): 12−23. doi: 10.3969/j.issn.1671-9492.2021.02.003

    CrossRef Google Scholar

    [10] 陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345−368. doi: 10.16111/j.0258-7106.2021.02.010

    CrossRef Google Scholar

    Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy:An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345−368. doi: 10.16111/j.0258-7106.2021.02.010

    CrossRef Google Scholar

    [11] 温利刚, 贾木欣, 王清, 等. 自动矿物学新技术——BPMA技术及在煤中的应用[J]. 中国煤炭地质, 2019, 31(9): 8−17. doi: 10.3969/j.issn.1674-1803.2019.09.02

    CrossRef Google Scholar

    Wen L G, Jia M X, Wang Q, et al. A new technology for automated process mineralogy:BPMA technology and its application in coal research[J]. Coal Geology of China, 2019, 31(9): 8−17. doi: 10.3969/j.issn.1674-1803.2019.09.02

    CrossRef Google Scholar

    [12] 施明哲. 扫描电镜和能谱仪的原理与实用分析技术[M]. 北京: 电子工业出版社, 2015: 1-400.

    Google Scholar

    Shi M Z. Principles and practical analysis techniques of scanning electron microscopy and energy spectrometer[M]. Beijing: Electronic Industry Press, 2015: 1-400.

    Google Scholar

    [13] 高歌, 王艳. MLA自动检测技术在工艺矿物学研究中的应用[J]. 黄金, 2015, 36(10): 4.

    Google Scholar

    Gao G, Wang Y. Application of MLA automatic detection technology in process mineralogy research[J]. Gold, 2015, 36(10): 4.

    Google Scholar

    [14] 李建华, 孙小俊. MLA技术在某铜钼矿选矿工艺研究中的应用[J]. 有色金属(选矿部分), 2018(5): 1−5.

    Google Scholar

    Li J H, Sun X J. Application of MLA technology in process mineralogy research on copper-molybdenum ore[J]. Nonferrous Metals (Mineral Processing Section), 2018(5): 1−5.

    Google Scholar

    [15] Al-Ali S, Wall F, Fitzpatrick R, et al. Key process mineralogy parameters for rare earth fluorcarbonate-bearing carbonatite deposits:The example of Songwe Hill, Malawi[J]. Minerals Engineering, 2020, 159: 106617. doi: 10.1016/j.mineng.2020.106617

    CrossRef Google Scholar

    [16] 李广, 肖琴, 胡海祥, 等. MLA在斑岩型锡石矿工艺矿物学研究中的应用[J]. 有色金属(选矿部分), 2019(6): 5−11.

    Google Scholar

    Li G, Xiao Q, Hu H X, et al. Application of MLA to study characteristics and occurrences of porphyry tin ore[J]. Nonferrous Metals (Mineral Processing Section), 2019(6): 5−11.

    Google Scholar

    [17] 张文, 田承涛, 翁孝卿, 等. 矿物解离分析系统在磷石膏工艺矿物学研究中的应用[J]. 矿产综合利用, 2022(1): 205−210. doi: 10.3969/j.issn.1000-6532.2022.01.030

    CrossRef Google Scholar

    Zhang W, Tian C T, Weng X Q, et al. Research on the process mineralogy of phosphogypsum using mineral liberation analysis system[J]. Multipurpose Utilization of Mineral Resources, 2022(1): 205−210. doi: 10.3969/j.issn.1000-6532.2022.01.030

    CrossRef Google Scholar

    [18] 温利刚, 付强, 于志超, 等. 矿物自动定量分析系统在低品位微细粒钼矿工艺矿物学研究中的应用[J]. 有色金属(选矿部分), 2022(2): 31−38. doi: 10.3969/j.issn.1671-9492.2022.02.004

    CrossRef Google Scholar

    Wen L G, Fu Q, Yu Z C, et al. Application of automated quantitative mineralogy system in the process mineralogy study of low-grade fine-grained molybdenum ore[J]. Nonferrous Metals (Mineral Processing Section), 2022(2): 31−38. doi: 10.3969/j.issn.1671-9492.2022.02.004

    CrossRef Google Scholar

    [19] 曾广圣, 欧乐明. X射线衍射-扫描电镜等技术研究秘鲁铜硫矿石选矿工艺矿物学特征[J]. 岩矿测试, 2019, 38(2): 160−168. doi: 10.15898/j.cnki.11-2131/td.201804130042

    CrossRef Google Scholar

    Zeng G S, Ou L M. Study on mineralogical characteristics of Peru copper-sulphur ore dressing process by X-ray diffraction and scanning electron microscope[J]. Rock and Mineral Analysis, 2019, 38(2): 160−168. doi: 10.15898/j.cnki.11-2131/td.201804130042

    CrossRef Google Scholar

    [20] 邱显扬, 梁冬云, 洪秋阳, 等. 难处理金矿石的工艺矿物学及可选冶特性分析[J]. 贵金属, 2020, 41(2): 36−44. doi: 10.3969/j.issn.1004-0676.2020.02.008

    CrossRef Google Scholar

    Qiu X Y, Liang D Y, Hong Q Y, et al. Process mineralogy and process improvement analysis of a refractory gold ore[J]. Precious Metals, 2020, 41(2): 36−44. doi: 10.3969/j.issn.1004-0676.2020.02.008

    CrossRef Google Scholar

    [21] 胡欢, 王汝成, 车旭东, 等. 关键金属元素铍的原位分析技术研究进展[J]. 岩石学报, 2022, 38(7): 1890−1900. doi: 10.18654/1000-0569/2022.07.05

    CrossRef Google Scholar

    Hu H, Wang R C, Che X D, et al. Research progress of in situ analysis technology of key metal element beryllium[J]. Acta Petrologica Sinica, 2022, 38(7): 1890−1900. doi: 10.18654/1000-0569/2022.07.05

    CrossRef Google Scholar

    [22] 杨建文, 肖骏, 陈代雄, 等. 矿物解离分析仪在泥堡金尾矿金赋存状态分析中的应用[J]. 科学技术与工程, 2020, 20(7): 2619−2624. doi: 10.3969/j.issn.1671-1815.2020.07.014

    CrossRef Google Scholar

    Yang J W, Xiao J, Chen D X, et al. Application of mineral liberation analyzer in the analysis of occurrences of gold in Nibao gold tailings[J]. Science Technology and Engineering, 2020, 20(7): 2619−2624. doi: 10.3969/j.issn.1671-1815.2020.07.014

    CrossRef Google Scholar

    [23] 王俊萍, 武慧敏, 王玲. MLA在银的赋存状态研究中的应用[J]. 矿冶, 2015, 24(1): 77. doi: 10.3969/j.issn.1005-7854.2015.01.019

    CrossRef Google Scholar

    Wang J P, Wu H M, Wang L. Application of MLA in the study of silver occurrence status[J]. Mining and Metallurgy, 2015, 24(1): 77. doi: 10.3969/j.issn.1005-7854.2015.01.019

    CrossRef Google Scholar

    [24] 张然, 叶丽娟, 党飞鹏, 等. 自动矿物分析技术在鄂尔多斯盆地砂岩型铀矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2021, 40(1): 61−73. doi: 10.15898/j.cnki.11-2131/td.202005130071

    CrossRef Google Scholar

    Zhang R, Ye L J, Dang F P, et al. Application of automatic mineral analysis technology to identify minerals and occurrences of elements in sandstone-type uranium deposits in the Ordos Basin[J]. Rock and Mineral Analysis, 2021, 40(1): 61−73. doi: 10.15898/j.cnki.11-2131/td.202005130071

    CrossRef Google Scholar

    [25] 余彬, 王礼珊, 赵立恒, 等. 铜冶炼渣工艺矿物学研究与磨浮流程优化方向探讨[J]. 矿冶, 2020, 29(5): 119−126. doi: 10.3969/j.issn.1005-7854.2020.05.023

    CrossRef Google Scholar

    Yu B, Wang L S, Zhao L H, et al. Study on process mineralogy of copper smelting slag and optimization direction of grinding flotation process[J]. Mining and Metallurgy, 2020, 29(5): 119−126. doi: 10.3969/j.issn.1005-7854.2020.05.023

    CrossRef Google Scholar

    [26] 温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121−129. doi: 10.15898/j.cnki.11-2131/td.201708110129

    CrossRef Google Scholar

    Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121−129. doi: 10.15898/j.cnki.11-2131/td.201708110129

    CrossRef Google Scholar

    [27] Yu J, Ke H Q, Pei C Z, et al. Process mineralogy of Dalucao rare earth ore and design of beneficiation process based on AMICS[J]. Rare Metals, 2020, 39(8): 959−966. doi: 10.1007/s12598-020-01446-w

    CrossRef Google Scholar

    [28] Luo L Q, Zhang H Q. Process mineralogy and characteristic associations of iron and phosphorus-based minerals on oolitic hematite[J]. Journal of Central South University, 2017, 24(9): 1959−1967. doi: 10.1007/s11771-017-3604-8

    CrossRef Google Scholar

    [29] Liu T, Song W, Kynicky J, et al. Automated quantitative characterization REE ore mineralogy from the giant Bayan Obo deposit, Inner Mongolia, China[J]. Minerals, 2022, 12(4): 426. doi: 10.3390/min12040426

    CrossRef Google Scholar

    [30] Gottlieb P, Wilkie G, Sutherland D, et al. Using quantitative electron microscopy for process mineralogy applications[J]. Journal of Metals, 2000, 52(4): 24−25.

    Google Scholar

    [31] Grammatikopoulos T, Mercer W, Gunning C. Mineralogical characterisation using QEMSCAN® of the Nechalacho heavy rare earth metal deposit, Northwest Territories, Canada[J]. Canadian Metallurgical Quarterly, 2013, 52(3): 265−277. doi: 10.1179/1879139513Y.0000000090

    CrossRef Google Scholar

    [32] Rythoven A D V, Pfaff K, Clark J G. Use of QEMSCAN® to characterize oxidized REE ore from the Bear Lodge carbonatite, Wyoming, USA[J]. Ore and Energy Resource Geology, 2020, 2-3: 100005. doi: 10.1016/j.oreoa.2020.100005

    CrossRef Google Scholar

    [33] Hrstka T, Gottlieb P, Skála R, et al. Automated mineralogy and petrology—Applications of TESCAN integrated mineral analyzer (TIMA)[J]. Journal of Geosciences, 2018, 63(1): 47−63.

    Google Scholar

    [34] Aylmore M G, Eksteen J J, Jones M G, et al. The mineralogy and processing potential of the commonwealth project in the Molong volcanic belt, central Eastern New South Wales, Australia[J]. Ore Geology Reviews, 2019, 111: 102976. doi: 10.1016/j.oregeorev.2019.102976

    CrossRef Google Scholar

    [35] Smythe D M, Lombard A, Coetzee L L. Rare earth element deportment studies utilising QEMSCAN technology[J]. Minerals Engineering, 2013, 52: 52−61. doi: 10.1016/j.mineng.2013.03.010

    CrossRef Google Scholar

    [36] Gilligan R, Nikoloski A N. Alkaline leaching of brannerite. Part 2:Leaching of a high-carbonate refractory uranium ore[J]. Hydrometallurgy, 2017, 173: 224−231. doi: 10.1016/j.hydromet.2017.08.019

    CrossRef Google Scholar

    [37] Aylmore M G, Merigot K, Quadir Z, et al. Applications of advanced analytical and mass spectrometry techniques to the characterisation of micaceous lithium-bearing ores[J]. Minerals Engineering, 2018, 116: 182−195. doi: 10.1016/j.mineng.2017.08.004

    CrossRef Google Scholar

    [38] Aylmore M G, Merigot K, Rickard W, et al. Assessment of a spodumene ore by advanced analytical and mass spectrometry techniques to determine its amenability to processing for the extraction of lithium[J]. Minerals Engineering, 2018, 119: 137−148. doi: 10.1016/j.mineng.2018.01.010

    CrossRef Google Scholar

    [39] Breiter K, Badanina E, Uriová J, et al. Chemistry of quartz—A new insight into the origin of the Orlovka Ta-Li deposit, Eastern Transbaikalia, Russia[J]. Lithos, 2019, 348-349: 105206. doi: 10.1016/j.lithos.2019.105206

    CrossRef Google Scholar

    [40] Ward I, Merigot K, Mcinnes B I A. Application of quantitative mineralogical analysis in archaeological micromorphology:A case study from Barrow Is. Western Australia[J]. Journal of Archaeological Method and Theory, 2017, 25(19-20): 1−24.

    Google Scholar

    [41] Honeyands T, Manuel J, Matthews L, et al. Comparison of the mineralogy of iron ore sinters using a range of techniques[J]. Minerals, 2019, 9(6): 333. doi: 10.3390/min9060333

    CrossRef Google Scholar

    [42] Juránek R, Výravský J, Kolář M, et al. Graph-based deep learning segmentation of EDS spectral images for automated mineral phase analysis[J]. Computers & Geosciences, 2022: 105109.

    Google Scholar

    [43] 谢小敏, 李利, 袁秋云, 等. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50−60. doi: 10.15898/j.cnki.11-2131/td.202007120103

    CrossRef Google Scholar

    Xie X M, Li L, Yuan Q Y, et al. Grain size distribution of organic matter and pyrite in Alum shales characterized by TIMA and its paleo-environmental significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50−60. doi: 10.15898/j.cnki.11-2131/td.202007120103

    CrossRef Google Scholar

    [44] 钟祥, 陈福林, 史志新, 等. 矿物自动分析系统在攀西某矿区钒钛磁铁矿工艺矿物学上的应用[J]. 冶金分析, 2022, 42(7): 62−70.

    Google Scholar

    Zhong X, Chen F L, Shi Z X, et al. Application of advanced mineral identification and characterization system in process mineralogy of vanadium-titanium magnetite in a mining area of Panxi[J]. Metallurgical Analysis, 2022, 42(7): 62−70.

    Google Scholar

    [45] 温利刚, 贾木欣, 付强, 等. 矿物自动定量分析系统在金的赋存状态研究中的应用[J]. 有色金属(选矿部分), 2022(4): 1−8. doi: 10.3969/j.issn.1671-9492.2022.04.001

    CrossRef Google Scholar

    Wen L G, Jia M X, Fu Q, et al. Application of automated quantitative mineralogy system in the deportment study of low-grade and fine-grained gold[J]. Nonferrous Metals (Mineral Processing Section), 2022(4): 1−8. doi: 10.3969/j.issn.1671-9492.2022.04.001

    CrossRef Google Scholar

    [46] 高倩倩, 刘杨, 杨艳芳, 等. MLA与偏光显微镜在工艺矿物学研究中的应用对比[J]. 矿业工程, 2018, 16(4): 39−40. doi: 10.16672/j.cnki.kygc.2018.04.013

    CrossRef Google Scholar

    Gao Q Q, Liu Y, Yang Y F, et al. The application comparison between MLA and polarizing microscope in process mineralogy study[J]. Mining Engineering, 2018, 16(4): 39−40. doi: 10.16672/j.cnki.kygc.2018.04.013

    CrossRef Google Scholar

    [47] 刘榕鑫, 朱坤, 谢海云, 等. 云南斑岩型多金属金矿的嵌布特征及赋存状态研究[J]. 岩矿测试, 2018, 37(4): 404−410. doi: 10.15898/j.cnki.11-2131/td.201710200169

    CrossRef Google Scholar

    Liu R X, Zhu K, Xie H Y, et al. Study on the inlay characteristics and occurrences of Yunnan porphyry polymetallic gold deposits[J]. Rock and Mineral Analysis, 2018, 37(4): 404−410. doi: 10.15898/j.cnki.11-2131/td.201710200169

    CrossRef Google Scholar

    [48] 朱丹, 桂博艺, 王芳, 等. AMICS测试技术在铌矿中的应用——以竹溪铌矿为例[J]. 有色金属(选矿部分), 2021(3): 1−7.

    Google Scholar

    Zhu D, Gui B Y, Wang F, et al. Application of AMICS test technology in Niobium ore—A case study of Zhuxi niobium ore[J]. Nonferrous Metals (Mineral Processing Section), 2021(3): 1−7.

    Google Scholar

    [49] 庞建涛, 肖喆, 王灿霞, 等. MLA系统在磷块岩工艺矿物学研究中的应用[J]. 化工矿物与加工, 2015, 44(10): 19−21.

    Google Scholar

    Pang J T, Xiao Z, Wang C X, et al. Application of MLA system in process mineralogy research of phosphorite block[J]. Chemical Minerals and Processing, 2015, 44(10): 19−21.

    Google Scholar

    [50] 方明山, 王明燕. AMICS 在铜矿伴生金银综合回收中的应用[J]. 矿冶, 2018, 27(3): 104−108.

    Google Scholar

    Fang M S, Wang M Y. Application of AMICS in comprehensive recovery of associated gold and silver in a copper ore[J]. Mining and Metallurgy, 2018, 27(3): 104−108.

    Google Scholar

    [51] 李波, 梁冬云, 张莉莉, 等. 自动矿物分析系统的统计误差分析[J]. 矿冶, 2018, 27(4): 120−123. doi: 10.3969/j.issn.1005-7854.2018.04.025

    CrossRef Google Scholar

    Li B, Liang D Y, Zhang L L, et al. The statistical deviation analysis of automatic process mineralogy analysis system[J]. Mining and Metallurgy, 2018, 27(4): 120−123. doi: 10.3969/j.issn.1005-7854.2018.04.025

    CrossRef Google Scholar

    [52] 付艳红, 李振, 周安宁, 等. 煤中矿物及显微组分解离特性的MLA研究[J]. 中国矿业大学学报, 2017, 46(6): 1357−1363.

    Google Scholar

    Fu Y H, Li Z, Zhou A N, et al. Liberation characterization of minerals and macerals in coal by using MLA[J]. Journal of China University of Mining and Technology, 2017, 46(6): 1357−1363.

    Google Scholar

    [53] Xu C L, Zhong C B, Lu R L, et al. Process mineralogy of Weishan rare earth ore by MLA[J]. Journal of Rare Earth, 2019, 37(3): 334−338. doi: 10.1016/j.jre.2018.06.008

    CrossRef Google Scholar

    [54] Sampaio N P, Araújo F G, von Kruger F L. The formation of Brazilian minerals database for integrated SEM-EDS system applied to the gold ore characterization[J]. Holos, 2018, 3: 2−22. doi: 10.15628/holos.2018.6938

    CrossRef Google Scholar

    [55] Goodall W R, Scales P J, Butcher A R. The use of QEMSCAN and diagnostic leaching in the characterisation of visible gold in complex ores[J]. Minerals Engineering, 2005, 18(8): 877−886. doi: 10.1016/j.mineng.2005.01.018

    CrossRef Google Scholar

    [56] Benvie B, Chapman N M, Robinson D J, et al. A robust statistical method for mineralogical analysis in geometallurgical diagnostic leaching[J]. Minerals Engineering, 2013, 52: 178−183. doi: 10.1016/j.mineng.2013.06.010

    CrossRef Google Scholar

    [57] Schulz B, Merker G, Gutzmer J. Automated SEM mineral liberation analysis (MLA) with generically labelled EDX spectra in the mineral processing of rare earth element ores[J]. Minerals, 2019, 9(9): 527. doi: 10.3390/min9090527

    CrossRef Google Scholar

    [58] 王运, 胡宝群, 李佑国, 等. 邹家山铀矿石伴生稀土的EMPA和MLA研究[J]. 稀土, 2018, 39(3): 17−26.

    Google Scholar

    Wang Y, Hu B Q, Li Y G, et al. Study of EMPA and MLA of associated rare earth in Zoujiashan uranium ore[J]. Chinese Rare Earths, 2018, 39(3): 17−26.

    Google Scholar

    [59] Gaudin A M. Principles of mineral dressing[R]. New York: McGraw Hill, 1939: 1-554.

    Google Scholar

    [60] McIvor R E, Finch J A. A guide to interfacing of plant grinding and flotation operations[J]. Minerals Engineering, 1991, 4(1): 9−23. doi: 10.1016/0892-6875(91)90114-B

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(1571) PDF downloads(169) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint