Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 4
Article Contents

LI Min, QIN Jing, BAI Yang, HE Chen, XU Xuemin, CHEN Jianfa. Determination Methods and Distribution Characteristics of Nitrogen Isotopes in Different Nitrogenous Components of Crude Oil[J]. Rock and Mineral Analysis, 2023, 42(4): 771-780. doi: 10.15898/j.ykcs.202206300120
Citation: LI Min, QIN Jing, BAI Yang, HE Chen, XU Xuemin, CHEN Jianfa. Determination Methods and Distribution Characteristics of Nitrogen Isotopes in Different Nitrogenous Components of Crude Oil[J]. Rock and Mineral Analysis, 2023, 42(4): 771-780. doi: 10.15898/j.ykcs.202206300120

Determination Methods and Distribution Characteristics of Nitrogen Isotopes in Different Nitrogenous Components of Crude Oil

More Information
  • BACKGROUND

    The distribution of nitrogen isotopes has important significance in paleoclimate, paleo-sedimentary and evolutionary characteristics. Nitrogen is one of the important heteroatomic elements in crude oil. The nitrogen content of crude oil is generally 0.1% to 2%, mainly in the non-hydrocarbon and asphaltene fractions, and can be divided into basic and non-basic nitrogenous fractions according to polarity. Due to the high carbon/nitrogen ratio of crude oils, accurate nitrogen isotope analysis results cannot be obtained from direct testing for most crude oils. As a result, the research on nitrogen isotopes in crude oil has been developed slowly, and the available data are few, while not being well applied in practice.

    OBJECTIVES

    To determine the nitrogen isotopic distribution characteristics of different nitrogen-containing components in crude oil, and to address the problem of low nitrogen content in crude oil, which makes the direct determination of nitrogen isotopes less stable and reproducible.

    METHODS

    A two-stage separation pre-treatment method was utilized to successively separate the non-hydrocarbon and asphaltene fractions of crude oil, and the basic and neutral nitrogen fractions were separated from the non-hydrocarbon fraction. The characteristics of nitrogen isotope distribution in different nitrogenous components of crude oil were determined by the Dumas combustion method. Multiple stable nitrogen isotope standards (USGS61, USGS62, USGS63) were selected for quality control of nitrogen isotope results.

    RESULTS

    The nitrogen isotope data obtained by this method for each component of crude oil were of good quality, with the uncertainties less than ±0.4‰. By separating and measuring crude oil samples from marine and continental sedimentary environments, the results showed that the nitrogen isotope of crude oil samples in continental sedimentary environment was heavier than that in a marine sedimentary environment. The distribution of nitrogen isotopes of asphaltene fractions was heavier than that of non-hydrocarbon fractions. The distribution characteristics of the nitrogen isotopes of the different polar nitrogen-containing compounds also differed significantly.

    CONCLUSIONS

    The technical dilemma that crude oil samples cannot accurately produce stable nitrogen isotopes due to the disparity in carbon to nitrogen ratios is solved and technical support for the practical application of a crude oil nitrogen isotope index is also obtained.

  • 加载中
  • [1] 徐雁前,张同伟. 沉积物中有机氮的研究[J]. 天然气地球科学, 1996, 7(4): 34−41. doi: 10.11764/j.issn.1672-1926.1996.04.34

    CrossRef Google Scholar

    Xu Y Q,Zhang T W. Study on organic nitrogen in sediments[J]. Natural Gas Geoscience, 1996, 7(4): 34−41. doi: 10.11764/j.issn.1672-1926.1996.04.34

    CrossRef Google Scholar

    [2] 任飞. 石油中的氮化合物[J]. 广东化工, 2006, 33(8): 38−40. doi: 10.3969/j.issn.1007-1865.2006.08.013

    CrossRef Google Scholar

    Ren F. Nitrogen compounds in petroleum[J]. Guangdong Chemical Industry, 2006, 33(8): 38−40. doi: 10.3969/j.issn.1007-1865.2006.08.013

    CrossRef Google Scholar

    [3] Patience R L,Baxby M,Bartle K D,et al. The functionality of organic nitrogen in some recent sediments from the Peru upwelling region[J]. Organic Geochemistry, 1992, 18(2): 161−169. doi: 10.1016/0146-6380(92)90126-I

    CrossRef Google Scholar

    [4] Li M, Larter S, Stoddart D, et al. Fractionation of pyrrolic nitrogen compounds in petroleum during migration: Derivation of migration-related geochemical parameters[M]. London: Geological Society, 1995: 103-123.

    Google Scholar

    [5] 韩晓昱,马波,凌凤香,等. 原油中含氮化合物的分离富集及鉴定方法[J]. 石油与天然气化工, 2006, 35(2): 145−148. doi: 10.3969/j.issn.1007-3426.2006.02.021

    CrossRef Google Scholar

    Han X Y,Ma B,Ling F X,et al. Advances in separation and quantification of nitrogen-containing compounds in crude oil[J]. Chemical Engineering of Oil Gas, 2006, 35(2): 145−148. doi: 10.3969/j.issn.1007-3426.2006.02.021

    CrossRef Google Scholar

    [6] Schiller J E,Mathiason D R. Separation method for coal-derived solids and heavy liquids[J]. Analytical Chemistry, 1977, 49(8): 1225−1228. doi: 10.1021/ac50016a041

    CrossRef Google Scholar

    [7] Later D W,Lee M L,Bartle K D,et al. Chemical class separation and characterization of organic compounds in synthetic fuels[J]. Analytical Chemistry, 1981, 53(11): 1612−1620. doi: 10.1021/ac00234a017

    CrossRef Google Scholar

    [8] 李素梅,张爱云,王铁冠,等. 含氮化合物的实验方法初步评价[J]. 地球化学, 1999, 28(4): 397−404. doi: 10.3321/j.issn:0379-1726.1999.04.011

    CrossRef Google Scholar

    Li S M,Zhang A Y,Wang T G,et al. Evalution of isolation schemes of nitrogenous compounds[J]. Geochimica, 1999, 28(4): 397−404. doi: 10.3321/j.issn:0379-1726.1999.04.011

    CrossRef Google Scholar

    [9] 李素梅,张爱云,王铁冠,等. 原油中吡咯类化合物的分离方法研究[J]. 石油实验地质, 1999, 21(3): 278−282. doi: 10.3969/j.issn.1001-6112.1999.03.018

    CrossRef Google Scholar

    Li S M,Zhang A Y,Wang T G,et al. Separation methods of pyrrolic compounds in crude oil[J]. Experimental Petroleum Geology, 1999, 21(3): 278−282. doi: 10.3969/j.issn.1001-6112.1999.03.018

    CrossRef Google Scholar

    [10] 谢颖,鲍晓军,谭华平,等. 有机酸脱除基础油中碱性氮化物的研究[J]. 润滑油, 2000, 15(4): 52−54. doi: 10.19532/j.cnki.cn21-1265/tq.2000.04.013

    CrossRef Google Scholar

    Xie Y,Bao X J,Tan H P,et al. Study on the removal of basic nitrogen compounds from lube base oil by organic acid[J]. Lubricating Oil, 2000, 15(4): 52−54. doi: 10.19532/j.cnki.cn21-1265/tq.2000.04.013

    CrossRef Google Scholar

    [11] 郭文玲,李萍,张起凯,等. 微波辐射络合萃取精制催化裂化柴油[J]. 石油与天然气化工, 2006, 35(6): 447−449,416−417. doi: 10.3969/j.issn.1007-3426.2006.06.009

    CrossRef Google Scholar

    Guo W L,Li P,Zhang Q K,et al. Complexation extraction using microwave radiation[J]. Chemical Engineering of Oil & Gas, 2006, 35(6): 447−449,416−417. doi: 10.3969/j.issn.1007-3426.2006.06.009

    CrossRef Google Scholar

    [12] McKay J F,Amend P J,Harnsberge P L. Composition of petroleum heavy ends 2. Chromatography of compound types in petroleum >675℃ residues[J]. Fuel, 1981, 60(1): 17−26. doi: 10.1016/0016-2361(81)90026-0

    CrossRef Google Scholar

    [13] 张胜,杨秋水,李似欣. 络合法分离页岩油中的含氮化合物[J]. 石油大学学报(自然科学版), 1996, 20(S1): 77−80.

    Google Scholar

    Zhang S,Yang Q S,Li S X. Separation of nitrogen compounds from shale oil by complexation method[J]. Journal of the University of Petroleum (Edition of Natural Science), 1996, 20(S1): 77−80.

    Google Scholar

    [14] 黄克明,江绿深,朱永飞. 络合反应法脱除润滑油中的碱性氮化物[J]. 润滑油, 1999, 14(5): 49−50. doi: 10.19532/j.cnki.cn21-1265/tq.1999.05.013

    CrossRef Google Scholar

    Huang K M,Jiang L S,Zhu Y F. Removing basic nitrogen compounds from lube oil by complexation[J]. Lubricating Oil, 1999, 14(5): 49−50. doi: 10.19532/j.cnki.cn21-1265/tq.1999.05.013

    CrossRef Google Scholar

    [15] 陈月珠,吴艳萍,周文勇,等. 润滑油基础油中含氮化合物的分离[J]. 石油学报(石油加工), 1996, 12(2): 61−68.

    Google Scholar

    Chen Y Z,Wu Y P,Zhou W Y,et al. Separation of nitrogen compounds from lube base oils[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1996, 12(2): 61−68.

    Google Scholar

    [16] 李德生. 凯氏定氮应用领域评议[J]. 计量与测试技术, 2009, 36(10): 15,17. doi: 10.3969/j.issn.1004-6941.2009.10.009

    CrossRef Google Scholar

    Li D S. Appraisal based on applied field of Kjeldahl determination[J]. Metrology & Measurement Technique, 2009, 36(10): 15,17. doi: 10.3969/j.issn.1004-6941.2009.10.009

    CrossRef Google Scholar

    [17] Hoering T C,Moore H E. The isotopic composition of the nitrogen in natural gases and associated crude oils[J]. Journal of the American Chemical Society, 1960, 82(13): 225−232.

    Google Scholar

    [18] Wada E,Kadonaga T,Matsuo S. 15N abundance in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint[J]. Geochemical Journal, 1975, 9(3): 139−148. doi: 10.2343/geochemj.9.139

    CrossRef Google Scholar

    [19] Delwiche C C,Steyn P L. Nitrogen isotope fractionation in soils and microbial reactions[J]. Environmental Science & Technology, 1970, 4(11): 929−935.

    Google Scholar

    [20] 陈传平,梅博文,曹亚澄. 原油氮同位素样品制备及其比值分析[J]. 分析化学, 2002, 30(5): 640. doi: 10.3321/j.issn:0253-3820.2002.05.038

    CrossRef Google Scholar

    Chen C P,Mei B W,Cao Y C. Crude oil nitrogen isotope sample preparation and ratio analysis[J]. Chinese Journal of Analytical Chemistry, 2002, 30(5): 640. doi: 10.3321/j.issn:0253-3820.2002.05.038

    CrossRef Google Scholar

    [21] 范志影,周陈维. 杜马斯燃烧定氮法在农产品品质检测中的应用[J]. 现代科学仪器, 2006(1): 45−46. doi: 10.3969/j.issn.1003-8892.2006.01.014

    CrossRef Google Scholar

    Fan Z Y,Zhou C W. Application of Dumas combustion method for nitrogen analysis on agricultural products[J]. Modern Scientific Instruments, 2006(1): 45−46. doi: 10.3969/j.issn.1003-8892.2006.01.014

    CrossRef Google Scholar

    [22] 徐丽,邢蓝田,王鑫,等. 元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定[J]. 岩矿测试, 2018, 37(1): 15−20. doi: 10.15898/j.cnki.11-2131/td.201701130005

    CrossRef Google Scholar

    Xu L,Xing L T,Wang X,et al. Study on the optimal reaction temperature and sampling weight for measurement of carbon and nitrogen isotope ratio by elemental analysis-isotope ratio mass spectrometer[J]. Rock and Mineral Analysis, 2018, 37(1): 15−20. doi: 10.15898/j.cnki.11-2131/td.201701130005

    CrossRef Google Scholar

    [23] 王旭,张福松,丁仲礼. EA-Conflo-IRMS联机系统的燃烧转化率漂移及其对氮、碳同位素比值测定的影响[J]. 质谱学报, 2006, 27(2): 104−109. doi: 10.3969/j.issn.1004-2997.2006.02.009

    CrossRef Google Scholar

    Wang X,Zhang F S,Ding Z L. Changes in the combustion transformation capability of EA-Conflo-IRMS and their impacts on nitrogen and carbon isotope ratio measurement[J]. Journal of Chinese Mass Spectrometry Society, 2006, 27(2): 104−109. doi: 10.3969/j.issn.1004-2997.2006.02.009

    CrossRef Google Scholar

    [24] 朱光有,刘星旺,朱永峰,等. 塔里木盆地哈拉哈塘地区复杂油气藏特征及其成藏机制[J]. 矿物岩石地球化学通报, 2013, 32(2): 231−242. doi: 10.3969/j.issn.1007-2802.2013.02.009

    CrossRef Google Scholar

    Zhu G Y,Liu X W,Zhu Y F,et al. The characteristics and the accumulation mechanism of complex reservoirs in the Hanilcatam area,Tarim Basin[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2013, 32(2): 231−242. doi: 10.3969/j.issn.1007-2802.2013.02.009

    CrossRef Google Scholar

    [25] 倪新锋,张丽娟,沈安江,等. 塔里木盆地英买力—哈拉哈塘地区奥陶系碳酸盐岩岩溶型储层特征及成因[J]. 沉积学报, 2011, 29(3): 465−474. doi: 10.14027/j.cnki.cjxb.2011.03.001

    CrossRef Google Scholar

    Ni X F,Zhang L J,Zhu A J,et al. Characteristics and genesis of Ordovician carbonate karst reservoir in Yingmaili—Halahatang area,Tarim Basin[J]. Acta Sedimentologica Sinica, 2011, 29(3): 465−474. doi: 10.14027/j.cnki.cjxb.2011.03.001

    CrossRef Google Scholar

    [26] 付金华,郭雯,李士祥,等. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学, 2021, 32(12): 1749−1761.

    Google Scholar

    Fu J H,Guo W,Li S X,et al. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation,Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1749−1761.

    Google Scholar

    [27] 付锁堂,付金华,牛小兵,等. 庆城油田成藏条件及勘探开发关键技术[J]. 石油学报, 2020, 41(7): 777−795. doi: 10.7623/syxb202007001

    CrossRef Google Scholar

    Fu S T,Fu J H,Niu X B,et al. Accumulation conditions and key exploration and development technologies in Qingcheng oil field[J]. Acta Petrolei Sinica, 2020, 41(7): 777−795. doi: 10.7623/syxb202007001

    CrossRef Google Scholar

    [28] 陈践发,徐学敏,师生宝. 不同沉积环境下原油氮同位素的地球化学特征[J]. 中国石油大学学报(自然科学版), 2015, 39(5): 1−6. doi: 10.3969/j.issn.1673-5005.2015.05.001

    CrossRef Google Scholar

    Chen J F,Xu X M,Shi S B. Geochemical characteristics of nitrogen isotope of crude oils in different depositional environments[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(5): 1−6. doi: 10.3969/j.issn.1673-5005.2015.05.001

    CrossRef Google Scholar

    [29] 徐学敏,陈践发,师生宝,等. 原油不同极性含氮化合物的氮同位素组成特征[J]. 矿物岩石地球化学通报, 2017, 36(1): 150−153. doi: 10.3969/j.issn.1007-2802.2017.01.017

    CrossRef Google Scholar

    Xu X M,Chen J F,Shi S B,et al. Nitrogen isotope distribution characteristics of different polar nitrogen compounds in crude oil[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2017, 36(1): 150−153. doi: 10.3969/j.issn.1007-2802.2017.01.017

    CrossRef Google Scholar

    [30] 王艺繁. 塔里木台盆区深层原油的碳氮同位素地球化学特征及意义[D]. 北京: 中国石油大学(北京), 2018.

    Google Scholar

    Wang Y F. Application of nitrogen and carbon isotope as proxies for oil source: A research into deep crude oil in the Tarim Basin, NW China[D]. Beijing: China University of Petroleum (Beijing), 2018.

    Google Scholar

    [31] Oldenburg T B P,Larter S R,Huang H. Nitrogen isotope systematics of petroleum fractions of differing polarity-neutral versus basic compounds[J]. Organic Geochemistry, 2007, 38(10): 1789−1794. doi: 10.1016/j.orggeochem.2007.05.016

    CrossRef Google Scholar

    [32] Stüeken E E,Kipp M A,Koehler M C,et al. The evolution of Earth’s biogeochemical nitrogen cycle[J]. Earth—Science Reviews, 2016, 160: 220−239. doi: 10.1016/j.earscirev.2016.07.007

    CrossRef Google Scholar

    [33] Riddle B,Fox J,Mahoney D T,et al. Considerations on the use of carbon and nitrogen isotopic ratios for sediment fingerprinting[J]. Science of The Total Environment, 2022, 817: 152640. doi: 10.1016/j.scitotenv.2021.152640

    CrossRef Google Scholar

    [34] Li M,Luo Q Y,Chen J F,et al. Redox conditions and nitrogen cycling in the late Ordovician Yangtze Sea (South China)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2021, 567: 110305.

    Google Scholar

    [35] Sigman D M. Nitrogen isotopes in the ocean[M]//Encyclopedia of Ocean Sciences (The 3rd edition), 2019: 263−278.

    Google Scholar

    [36] Zerkle A L,Mikhail S. The geobiological nitrogen cycle:From microbes to the mantle[J]. Geobiology, 2017, 15(3): 343−352. doi: 10.1111/gbi.12228

    CrossRef Google Scholar

    [37] Schimmelmann A,Lis G P. Nitrogen isotopic exchange during maturation of organic matter[J]. Organic Geochemistry, 2010, 41(1): 63−70. doi: 10.1016/j.orggeochem.2009.01.005

    CrossRef Google Scholar

    [38] Rivera K T,Puckette J,Quan T M. Evaluation of redox versus thermal maturity controls on δ15N in organic rich shales:A case study of the Woodford Shale,Anadarko Basin,Oklahoma,USA[J]. Organic Geochemistry, 2015, 83-84: 127−139. doi: 10.1016/j.orggeochem.2015.03.005

    CrossRef Google Scholar

    [39] Williams L B,Ferrell R E,Hutcheon I,et al. Nitrogen isotope geochemistry of organic matter and minerals during diagenesis and hydrocarbon migration[J]. Geochimica et Cosmochimica Acta, 1995, 59(4): 765−779. doi: 10.1016/0016-7037(95)00005-K

    CrossRef Google Scholar

    [40] Krooss B M,Friberg L,Gensterblum Y,et al. Investigation of the pyrolytic liberation of molecular nitrogen from Palaeozoic sedimentary rocks[J]. International Journal of Earth Sciences, 2005, 94(5-6): 1023−1038. doi: 10.1007/s00531-005-0012-3

    CrossRef Google Scholar

    [41] Xie P,Dai S,Hower J C,et al. Nitrogen isotopic compositions in NH4+-mineral-bearing coal:Origin and isotope fractionation[J]. Chemical Geology, 2021, 559: 119946. doi: 10.1016/j.chemgeo.2020.119946

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(1773) PDF downloads(162) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint