Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 6
Article Contents

WANG Jin, BIAN Xiaopeng, YANG Tao. The Principle and Application of 'On Peak Zero' Correction in MC-ICP-MS Analysis[J]. Rock and Mineral Analysis, 2022, 41(6): 987-996. doi: 10.15898/j.cnki.11-2131/td.202204040071
Citation: WANG Jin, BIAN Xiaopeng, YANG Tao. The Principle and Application of "On Peak Zero" Correction in MC-ICP-MS Analysis[J]. Rock and Mineral Analysis, 2022, 41(6): 987-996. doi: 10.15898/j.cnki.11-2131/td.202204040071

The Principle and Application of "On Peak Zero" Correction in MC-ICP-MS Analysis

More Information
  • BACKGROUND

    Multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) has been widely applied to accurate and precise measurements of isotope ratios due to its high sample throughput, strong ionization ability of ICP sources and high mass resolution. For decades, the standard-sample bracketing (SSB) method has been used to correct for instrumental mass bias during the measurement to achieve accurate results. When the content of the target isotope in samples is low, the measurement results are easily influenced by the background signals. "On Peak Zero" correction deducts the background signal from the total signal, which is an effective method to eliminate the background interference and has been widely used, but no research has been conducted to systematically explore the mathematical principles behind this correction.

    OBJECTIVES

    To establish a mathematical model for the "On Peak Zero" correction, and verify its confidence by applying it to isotope measurements of different concentrations of Li, S, Fe, Sr, Nd and Pb standard solutions.

    METHODS

    In this study, a mathematical model of the influence by the background signal on isotopic composition was established by mathematical reasoning and approximate substitution. Standard solutions of different concentrations of Li, S, Fe, Sr, Nd and Pb were prepared for the application of the "On Peak Zero" method through experimental analysis. Two types of blank signals were subtracted separately from the aggregate signals to simulate isotope measurements without and with "On Peak Zero" correction.

    RESULTS

    The results indicate that the lower the concentration of the target element, the greater is the blank solution signal influence on the accuracy of the sample to be tested, and the "On Peak Zero" method can better eliminate the influence of the blank solution on the sample measurements. The simulation results based on this model were consistent with the real experimental results in this study.

    CONCLUSIONS

    The mathematical model and the data explain well the effect of background concentration on the experimental isotope values, and are useful for understanding the application of the "On Peak Zero" method in MC-ICP-MS isotope analysis.

  • 加载中
  • [1] Albarède F, Telouk P, Blichert-Toft J, et al. Precise and accurate isotopic measurements using multiple-collector ICPMS[J]. Geochimica et Cosmochimica Acta, 2004, 68(12): 2725-2744. doi: 10.1016/j.gca.2003.11.024

    CrossRef Google Scholar

    [2] Yang L. Accurate and precise determination of isotopic ratios by MC-ICP-MS: A review[M]//Mass Spectrometry Reviews. John Wiley & Sons, 2009: 990-1011.

    Google Scholar

    [3] Yang L, Tong S, Zhou L, et al. A critical review on isotopic fractionation correction methods for accurate isotope amount ratio measurements by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(11): 1849-1861. doi: 10.1039/C8JA00210J

    CrossRef Google Scholar

    [4] Zhu X K, O'Nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers[J]. Chemical Geology, 2000, 163(1-4): 139-149. doi: 10.1016/S0009-2541(99)00076-5

    CrossRef Google Scholar

    [5] Lin J, Liu Y, Hu Z, Yang L, et al. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 390-397. doi: 10.1039/C5JA00231A

    CrossRef Google Scholar

    [6] Lin A J, Yang T, Jiang S Y. A rapid and high-precision method for sulfur isotope δ34S determination with a multiple-collector inductively coupled plasma mass spectrometer: Matrix effect correction and applications for water samples without chemical purification[J]. Rapid Communications in Mass Spectrometry, 2014, 28(7): 750-756. doi: 10.1002/rcm.6838

    CrossRef Google Scholar

    [7] Bryant C J, McCulloch M T, Bennett V C. Impact of matrix effects on the accurate measurement of Li isotope ratios by inductively coupled plasma mass spectrometry (MC-ICP-MS) under "cold" plasma conditions[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(7): 734-737. doi: 10.1039/B212083F

    CrossRef Google Scholar

    [8] Vanhaecke F, Dams R, Vandecasteele C. "Zone model" as an explanation for signal behaviour and non-spectral interferences in inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1993, 8(3): 433-438. doi: 10.1039/JA9930800433

    CrossRef Google Scholar

    [9] Loula M, Kaňa A, Mestek O. Non-spectral interferences in single-particle ICP-MS analysis: An underestimated phenomenon[J]. Talanta, 2019, 202: 565-571. doi: 10.1016/j.talanta.2019.04.073

    CrossRef Google Scholar

    [10] Lemarchand D, Gaillardet J, Göpel C, et al. An optimized procedure for boron separation and mass spectrometry analysis for river samples[J]. Chemical Geology, 2002, 182(2-4): 323-334. doi: 10.1016/S0009-2541(01)00329-1

    CrossRef Google Scholar

    [11] Fortunato G, Mumic K, Wunderli S, et al. Application of strontium isotope abundance ratios measured by MC-ICP-MS for food authentication[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(2): 227-234. doi: 10.1039/b307068a

    CrossRef Google Scholar

    [12] Craddock P R, Rouxel O J, Ball L A, et al. Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS[J]. Chemical Geology, 2008, 253(3-4): 102-113. doi: 10.1016/j.chemgeo.2008.04.017

    CrossRef Google Scholar

    [13] Aggarwal J K, Sheppard D, Mezger K, et al. Precise and accurate determination of boron isotope ratios by multiple collector ICP-MS: Origin of boron in the Ngawha geothermal system, New Zealand[J]. Chemical Geology, 2003, 199(3-4): 331-342. doi: 10.1016/S0009-2541(03)00127-X

    CrossRef Google Scholar

    [14] Tanner S D. Space charge in ICP-MS: Calculation and implications[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1992, 47(6): 809-823. doi: 10.1016/0584-8547(92)80076-S

    CrossRef Google Scholar

    [15] Maréchal C N, Télouk P, Albarède F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1-4): 251-273. doi: 10.1016/S0009-2541(98)00191-0

    CrossRef Google Scholar

    [16] Albarède F, Albalat E, Télouk P. Instrumental isotope fractionation in multiple-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(8): 1736-1742. doi: 10.1039/C5JA00188A

    CrossRef Google Scholar

    [17] Galer S J G. Optimal double and triple spiking for high precision lead isotopic measurement[J]. Chemical Geology, 1999, 157(3-4): 255-274. doi: 10.1016/S0009-2541(98)00203-4

    CrossRef Google Scholar

    [18] Moynier F, Agranier A, Hezel D C, et al. Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites[J]. Earth and Planetary Science Letters, 2010, 300(3-4): 359-366. doi: 10.1016/j.epsl.2010.10.017

    CrossRef Google Scholar

    [19] Fietzke J, Eisenhauer A. Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fraction-ation via bracketing standard MC-ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08009.

    Google Scholar

    [20] Wieser M E, Buhl D, Bouman C, et al. High precision calcium isotope ratio measurements using a magnetic sector multiple collector inductively coupled plasma mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(7): 844-851. doi: 10.1039/b403339f

    CrossRef Google Scholar

    [21] Mason T F D, Weiss D J, Horstwood M, et al. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(2): 218-226. doi: 10.1039/b306953b

    CrossRef Google Scholar

    [22] 秦燕, 徐衍明, 侯可军, 等. 铁同位素分析测试技术研究进展[J]. 岩矿测试, 2020, 39(2): 151-161. doi: 10.15898/j.cnki.11-2131/td.201908120120

    CrossRef Google Scholar

    Qin Y, Xu Y M, Hou K J, et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2): 151-161. doi: 10.15898/j.cnki.11-2131/td.201908120120

    CrossRef Google Scholar

    [23] Gou L F, Deng L. Determination of barium isotopic ratios in river waters on MC-ICP-MS[J]. Analytical Sciences, 2019, 35(5): 18P329.

    Google Scholar

    [24] Magna T, Wiechert U H, Halliday A N. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS[J]. International Journal of Mass Spectrometry, 2004, 239(1): 67-76. doi: 10.1016/j.ijms.2004.09.008

    CrossRef Google Scholar

    [25] He M Y, Deng L, Lu H, et al. Elimination of the boron memory effect for rapid and accurate boron isotope analysis by MC-ICP-MS using NaF[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 1026-1032. doi: 10.1039/C9JA00007K

    CrossRef Google Scholar

    [26] Li J, Liang X R, Xu J F, et al. Simplified technique for the measurements of Re-Os isotope by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS)[J]. Geochemical Journal, 2010, 44(1): 73-80. doi: 10.2343/geochemj.1.0044

    CrossRef Google Scholar

    [27] 李杰, 梁细荣, 董彦辉, 等. 利用多接收器电感耦合等离子体质谱仪(MC-ICPMS)测定镁铁-超镁铁质岩石中的铼-锇同位素组成[J]. 地球化学, 2007, 36(2): 153-160. doi: 10.3321/j.issn:0379-1726.2007.02.004

    CrossRef Google Scholar

    Li J, Liang X R, Dong Y H, et al. Measurements of Re-Os isotopic composition in mafic-ultramafic rocks by multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS)[J]. Geochemica, 2007, 36(2): 153-160. doi: 10.3321/j.issn:0379-1726.2007.02.004

    CrossRef Google Scholar

    [28] Pons M L, Millet M A, Nowell G N, et al. Precise measurement of selenium isotopes by HG-MC-ICPMS using a 76-78 double-spike[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(2): 320-330. doi: 10.1039/C9JA00331B

    CrossRef Google Scholar

    [29] Liu S A, Li D, Li S, et al. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 29(1): 122-133.

    Google Scholar

    [30] 戴梦宁, 宗春蕾, 袁洪林. 高Rb/Sr岩石样品中Sr同位素多接收等离子体质谱分析校正方法研究[J]. 岩矿测试, 2012, 31(1): 95-102. doi: 10.3969/j.issn.0254-5357.2012.01.012

    CrossRef Google Scholar

    Dai M N, Zong C L, Yuan H L. A calibration strategy of 87Sr/86Sr ratio for rocks with high Rb/Sr measured by multiple collector-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 95-102. doi: 10.3969/j.issn.0254-5357.2012.01.012

    CrossRef Google Scholar

    [31] Woodhead J, Swearer S, Hergt J, et al. In situ Sr-isotope analysis of carbonates by LA-MC-ICP-MS: Interference corrections, high spatial resolution and an example from otolith studies[J]. Journal of Analytical Atomic Spectrometry, 2005, 20(1): 22-27. doi: 10.1039/b412730g

    CrossRef Google Scholar

    [32] Davidson J, Tepley F, Palacz Z, et al. Magma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks[J]. Earth and Planetary Science Letters, 2001, 184(2): 427-442. doi: 10.1016/S0012-821X(00)00333-2

    CrossRef Google Scholar

    [33] Hu Y, Teng F Z. Optimization of analytical conditions for precise and accurate isotope analyses of Li, Mg, Fe, Cu, and Zn by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(2): 338-346. doi: 10.1039/C8JA00335A

    CrossRef Google Scholar

    [34] Bian X P, Yang T, Lin A J, et al. Rapid and high-precision measurement of sulfur isotope and sulfur concentration in sediment pore water by multi-collector inductively coupled plasma mass spectrometry[J]. Talanta, 2015, 132: 8-14. doi: 10.1016/j.talanta.2014.08.053

    CrossRef Google Scholar

    [35] Weyer S, Schwieters J B. High precision Fe isotope measurements with high mass resolution MC-ICPMS[J]. International Journal of Mass Spectrometry, 2003, 226(3): 355-368. doi: 10.1016/S1387-3806(03)00078-2

    CrossRef Google Scholar

    [36] Paton C, Hellstrom J, Paul B, et al. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508-2518. doi: 10.1039/c1ja10172b

    CrossRef Google Scholar

    [37] Rosner M, Ball L, Peucker-Ehrenbrink B, et al. A simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and δ7Li values of seawater and rock reference materials[J]. Geostandards and Geoanalytical Research, 2007, 31(2): 77-88. doi: 10.1111/j.1751-908X.2007.00843.x

    CrossRef Google Scholar

    [38] Hoefs J. Stable isotope geochemistry[M]. Springer Science & Business Media, 2009.

    Google Scholar

    [39] El Meknassi S, Dera C T, de Rafélis M, et al. Sr isotope ratios of modern carbonate shells: Good and bad news for chemostratigraphy[J]. Geology, 2018, 46(11): 1003-1006. doi: 10.1130/G45380.1

    CrossRef Google Scholar

    [40] Lin J, Liu Y, Chen H, et al. Review of high-precision sr isotope analyses of low-Sr geological samples[J]. Journal of Earth Science, 2015, 26(5): 763-774. doi: 10.1007/s12583-015-0593-0

    CrossRef Google Scholar

    [41] Jeffcoate A B, Elliott T, Thomas A, et al. Precise/small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 161-172. doi: 10.1111/j.1751-908X.2004.tb01053.x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(2748) PDF downloads(180) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint