Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 6
Article Contents

ZHANG Yongqing, ZHOU Hongying, GENG Jianzhen, XIAO Zhibin, TU Jiarun, ZHANG Ran, YE Lijuan. Identification of TiO2 Polymorphs of the Bauxite Deposit in Central Guangxi by Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2022, 41(6): 978-986. doi: 10.15898/j.cnki.11-2131/td.202112070196
Citation: ZHANG Yongqing, ZHOU Hongying, GENG Jianzhen, XIAO Zhibin, TU Jiarun, ZHANG Ran, YE Lijuan. Identification of TiO2 Polymorphs of the Bauxite Deposit in Central Guangxi by Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2022, 41(6): 978-986. doi: 10.15898/j.cnki.11-2131/td.202112070196

Identification of TiO2 Polymorphs of the Bauxite Deposit in Central Guangxi by Laser Raman Spectroscopy

  • BACKGROUND

    Rutile, anatase and brookite are TiO2 polymorphs. In the rutile in-situ U-Pb dating, rutile was determined primarily on electron microprobe data and cathodoluminescence images, while these methods sometimes could not effectively distinguish rutile, anatase and brookite. If there are a small number of the TiO2 polymorphs in the sample, the obtained age may be a mixed age with no significant geological significance. Therefore, the identification of TiO2 polymorphs is very important.

    OBJECTIVES

    To identify TiO2 polymorphs from the bauxite deposit in central Guangxi.

    METHODS

    TiO2 minerals in bauxite from central Guangxi were used as the research object, and laser Raman spectroscopy was applied to the identification of TiO2 isomorphic minerals.

    RESULTS

    Four groups of laser Raman spectral lines with different characteristics were identified. The first three groups have laser Raman spectral peaks of anatase, rutile and brookite, respectively. The fourth group has two kinds of laser Raman spectral characteristic lines, one has both anatase characteristic peaks of 144, 198, 397, 513, 636cm-1 and rutile characteristic peaks of 442, 607cm-1, the other has both anatase characteristic peak of 144cm-1 and brookite characteristic peak of 153, 247, 325, 636cm-1.

    CONCLUSIONS

    The TiO2 polymorphs of the bauxite deposit includs rutile, anatase, brookite and intermediate minerals that undergo phase transformation. The study indicates that the bauxite deposit in central Guangxi may have undergone a later regional metamorphism, leading to the transformation of TiO2 polymorphs. The laser Raman spectroscopy provides a new method for the identification of TiO2 polymorphs andrutile for in-situ U-Pb dating.

  • 加载中
  • [1] 张雅, 李全忠, 闫峻, 等. LA-ICP-MS独居石U-Th-Pb测年方法研究[J]. 岩矿测试, 2021, 40(5): 637-649.

    Google Scholar

    Zhang Y, Li Q Z, Yan J, et al. Analytical conditions for U-Th-Pb dating of monazite by LA-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(5): 637-649.

    Google Scholar

    [2] 周雄, 周玉, 孙宝伟, 等. 四川甲基卡稀有金属矿床134号脉锡石U-Pb定年与地质意义[J]. 岩矿测试, 2021, 40(1): 156-164.

    Google Scholar

    Zhou X, Zhou Y, Sun B W, et al. Cassiterite U-Pb dating of No. 134 pegmatite vein in the Jiajika rare metal deposit, western Sichuan and its geological significances[J]. Rock and Mineral Analysis, 2021, 40(1): 156-164.

    Google Scholar

    [3] Dong Y, Ge W C, Yang H, et al. Geochemical and SIMS U-Pb rutile and LA-ICP-MS U-Pb zircon geochronological evidence of the tectonic evolution of the Mudanjiang ocean from amphibolites of the Heilongjiang complex, NE China[J]. Gondwana Research, 2019, 69: 25-44. doi: 10.1016/j.gr.2018.11.012

    CrossRef Google Scholar

    [4] Schmitt A K, Zack T, Kooijman E, et al. U-Pb ages of rare rutile inclusions in diamond indicate entrapment synchronous with kimberlite formation[J]. Lithos, 2019, 350-351: 105251. doi: 10.1016/j.lithos.2019.105251

    CrossRef Google Scholar

    [5] 许康康, 刘晓阳, 孙凯, 等. 坦桑尼亚乌本迪带内花岗岩类的LA-MC-ICP-MS锆石U-Pb年龄及地质意义[J]. 地质调查与研究, 2020, 43(1): 55-62. doi: 10.3969/j.issn.1672-4135.2020.01.006

    CrossRef Google Scholar

    Xu K K, Liu X Y, Sun K, et al. Zircon U-Pb LA-MC-ICP-MS dating and geological significance of the granitoids in the Ubendian belt, southwestern Tanzania[J]. Geological Survey and Research, 2020, 43(1): 55-62. doi: 10.3969/j.issn.1672-4135.2020.01.006

    CrossRef Google Scholar

    [6] 田辉, 李怀坤, 张健, 等. 天津蓟州东水厂中元古代高于庄组凝灰岩锆石SHRIMP U-Pb年龄——对中元古代生物-环境事件的制约[J]. 地质调查与研究, 2020, 43(2): 153-160. doi: 10.3969/j.issn.1672-4135.2020.02.009

    CrossRef Google Scholar

    Tian H, Li H K, Zhang J, et al. SHRIMP U-Pb dating for zircons from the tuff bed of the Mesoproterozoic Gaoyuzhuang Formation in Jixian Section, Tianjin, and its constraints on the Mesoproterozoic bio-environmental events[J]. Geological Survey and Research, 2020, 43(2): 153-160. doi: 10.3969/j.issn.1672-4135.2020.02.009

    CrossRef Google Scholar

    [7] 黄新鹏. 福建霞浦大湾钼铍矿区碱长花岗岩LA-ICP-MS锆石U-Pb测年研究[J]. 岩矿测试, 2018, 37(5): 572-579.

    Google Scholar

    Huang X P. LA-ICP-MS zircon U-Pb dating of alkali feldspar granites from the Dawan Mo-Be deposit, Xiapu, Fujian Province[J]. Rock and Mineral Analysis, 2018, 37(5): 572-579.

    Google Scholar

    [8] 张勇, 魏华, 陆太进, 等. 新疆奥米夏和田玉矿床成因及锆石LA-ICP-MS定年研究[J]. 岩矿测试, 2018, 37(6): 695-704.

    Google Scholar

    Zhang Y, Wei H, Lu T J, et al. The genesis and LA-ICP-MS zircon ages of the Omixia nephrite deposit, Xinjiang, China[J]. Rock and Mineral Analysis, 2018, 37(6): 695-704.

    Google Scholar

    [9] 郑奋, 刘琰, 张红清. 辽宁岫岩河磨玉岩石地球化学组成及锆石U-Pb定年研究[J]. 岩矿测试, 2019, 38(4): 438-448.

    Google Scholar

    Zheng F, Liu Y, Zhang H Q. The petrogeochemistry and zircon U-Pb age of nephrith place deposit in Xiuyan, Liaoning[J]. Rock and Mineral Analysis, 2019, 38(4): 438-448.

    Google Scholar

    [10] 涂家润, 崔玉荣, 周红英, 等. 锡石U-Pb定年方法评述[J]. 地质调查与研究, 2019, 42(4): 241-249.

    Google Scholar

    Tu J R, Cui Y R, Zhou H Y, et al. Review of U-Pb dating methods for cassiterite[J]. Geological Survey and Research, 2019, 42(4): 241-249.

    Google Scholar

    [11] 李广旭, 曹汇, 王达, 等. 胶北粉子山群和荆山群三叠纪变质变形记录: 金红石U-Pb年代学证据[J]. 地质学报, 2016, 90(11): 3246-3258. doi: 10.3969/j.issn.0001-5717.2016.11.017

    CrossRef Google Scholar

    Li G X, Cao H, Wang D, et al. Deformation and metamorphism of triassic fenzishan group and Jianshan Group in the Jianbei massif: Evidence from rutile U-Pb geochronology[J]. Acta Geologica Sinica, 2016, 90(11): 3246-3258. doi: 10.3969/j.issn.0001-5717.2016.11.017

    CrossRef Google Scholar

    [12] 李秋立, 赵磊, 张艳斌, 等. 朝鲜甑山"群"变质岩中锆石-榍石-金红石U-Pb体系: 古元古代—中生代构造-热事件记录[J]. 岩石学报, 2016, 32(10): 3019-3032.

    Google Scholar

    Li Q L, Zhao L, Zhang Y B, et al. Zircon-titanite-rutile U-Pb system metamorphic rocks of Junshan "group" in Korea: Implication of tectno-thermal events from paleoproterozic to mesozoic[J]. Acta Petrologica Sinica, 2016, 32(10): 3019-3032.

    Google Scholar

    [13] 熊伯琴, 许文良, 李秋立, 等. 徐淮地区早白垩世adakitic岩石中榴辉岩类捕虏体中金红石的SIMS U-Pb定年: 对华北克拉通东部陆壳加厚时间的制约[J]. 中国科学: 地球科学, 2015, 45(5): 553-560.

    Google Scholar

    Xiong B Q, Xu W L, Li Q L, et al. SIMS U-Pb dating of rutile within eclogitic xenoliths in the early Cretaceous adakitic rocks of the Xuzhou—Huaibei area, China: Constraints on the timing of crustal thickening on the eastern North China Craton[J]. Science China: Earth Science, 2015, 45(5): 553-560.

    Google Scholar

    [14] 张贵宾, 张立飞, 宁远煜, 等. 柴北缘超高压变质带的冷却历史: 来自副片麻岩中锆石、金红石的U-Pb年代学和温度信息[J]. 岩石学报, 2014, 30(10): 2835-2842.

    Google Scholar

    Zhang G B, Zhang L F, Ning Y Y, et al. Cooling history for North Qaidam UHPM belt: Constraints from zircon, rutile U-Pb dating and thermometry in paragneiss[J]. Acta Petrologica Sinica, 2014, 30(10): 2835-2842.

    Google Scholar

    [15] 赵一鸣, 李大新, 韩景仪, 等. 内蒙古羊蹄子山—磨石山钛铁矿、金红石和钛铁矿的矿物学特征[J]. 矿床地质, 2008, 27(4): 466-473.

    Google Scholar

    Zhao Y M, Li D X, Han J Y, et al. Mineralogical characteristics of anatase, rutile and ilmenite in Yangtizashan—Moshishan titanium ore deposit, Inner Mongolia[J]. Mineral Deposits, 2008, 27(4): 466-473.

    Google Scholar

    [16] 赵一鸣, 李大新, 吴良士, 等. 内蒙古磨石山沉积型变质型钛铁矿矿床: 一个大型新类型钛矿床的发现、勘查和研究[J]. 地质学报, 2012, 86(9): 1350-1366.

    Google Scholar

    Zhao Y M, Li D X, Wu L S, et al. Moshishan metamorphosed sedimentary antase deposit: Discovery, exploration, and study of a new genetic type large titanium deposit[J]. Acta Geologica Sinica, 2012, 86(9): 1350-1366.

    Google Scholar

    [17] 肖益林, 黄建, 刘磊, 等. 金红石: 重要的地球化学"信息库"[J]. 岩石学报, 2011, 27(2): 398-413.

    Google Scholar

    Xiao Y L, Huang J, Liu L, et al. Rutile: An important "reservoir" for geochemical information[J]. Acta Petrologica Sinica, 2011, 27(2): 398-413.

    Google Scholar

    [18] Force E R. Geology of titanium-mineral deposits[J]. The Geological Society of America, 1991, 259: 1-112.

    Google Scholar

    [19] Liu X F, Wang Q F, Deng J, et al. Mineralogical and geochemical investigations of the Dajia salento-type bauxite deposits, western Guangxi, China[J]. Journal of Geochemical Exploration, 2010, 105: 137-152.

    Google Scholar

    [20] Hanaor D A H, Sorrell C C. Review of the anatase to rutile phase transformation[J]. Journal of Materials Science, 2011, 46: 855-874.

    Google Scholar

    [21] Dudek K, Jones F, Radomirovic T, et al. The effect of anatase, rutile and sodium titanate on the dissolution of boehmite and gibbsite at 90℃[J]. International Journal of Mineral Processing, 2009, 93: 135-140.

    Google Scholar

    [22] Goresy A E, Chen M, Gillet P, et al. A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the ries crater in Germany[J]. Earth and Planetary Science Letters, 2001, 192: 485-495.

    Google Scholar

    [23] 杜谷, 王坤阳, 冉敬, 等. 红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用[J]. 岩矿测试, 2014, 33(5): 625-633.

    Google Scholar

    Du G, Wang K Y, Ran J, et al. Application of IR/SEM and other modern instrument for mineral identification[J]. Rock and Mineral Analysis, 2014, 33(5): 625-633.

    Google Scholar

    [24] 范光, 葛祥坤. 微区X射线衍射在矿物鉴定中的应用实例[J]. 世界核地质科学, 2010, 27(2): 85-89.

    Google Scholar

    Fan G, Ge X K. Application example of micro X-ray diffraction in mineral identification[J]. World Nuclear Geoscience, 2010, 27(2): 85-89.

    Google Scholar

    [25] Diebold U. The surface science of titanium dioxide[J]. Surface Science Reports, 2003, 48(5-8): 53-229.

    Google Scholar

    [26] Landmann M, Raulse E, Schmidt W G. The electronic structure and optical response of rutile, anatase and brookite TiO2[J]. Journal of Physics: Condensed Matter, 2012, 24: 195503.

    Google Scholar

    [27] Meinhold G. Rutile and its applications in Earth sciences[J]. Earth-Science Reviews, 2010, 102: 1-28.

    Google Scholar

    [28] Hu Y, Tsai H L, Huang C L. Effect of brookite phase on the anatase-rutile transition in titania nanoparticles[J]. Journal of European Ceramic Society, 2003, 23: 691-696.

    Google Scholar

    [29] Huberty J, Xu H. Kinetics study on phase transformation from titania polymorph brookite to rutile[J]. Journal of Solid State Chemistry, 2008, 181: 508-514.

    Google Scholar

    [30] Zhang M L, Chen T D, Wang Y J. Insights into TiO2 polymorphs: Highly selective synthesis, phase transition, and their polymorph-dependent properties[J]. Royal Society of Chemistry Advances, 2017, 7: 52755-52761.

    Google Scholar

    [31] Gamaletsos P N, Godelitsas A, Kasama T. Nano-mineralogy and geochemistry of high-grade diasporic karst-type bauxite from Parnassos—Ghiona mines, Greece[J]. Ore Geology Reviews, 2017, 84: 228-244.

    Google Scholar

    [32] Zhang L, Park C Y, Wang G H, et al. Phase transformation processes in karst-type bauxite deposit from Yunnan area, China[J]. Ore Geology Reviews, 2017, 89: 407-420.

    Google Scholar

    [33] Hebert E, Gauthier M. Unconventional rutile deposits in the Quebec applialachians: Product of hypogene enrichment during low-grade metamorphism[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2007, 102(2): 319-326.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(2583) PDF downloads(112) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint